A test for stationarity for irregularly spaced

spatial data - Supplementary material

Soutir Bandyopadhyay and Suhasini Subba Rao
October 13, 2015

1 Introduction

In the supplementary material we include materials which were not included in the main

body of the paper. In particular,
1. The proof of Theorem 2.1.
2. The proofs of the results in Section 3 (the stationary case).
3. The proofs of the results in Section 4 (the nonstationary case).

4. A test designed specifically for detecting changes in the spatial variance. This test is
based on the test we proposed in the main body, however simulations suggest it has
less power than the original test. However, we include it here, as we believe it may

have some independent interest and is worth future investigation.

5. The diagnostic plots for the ozone example considered in Section 7.2.

2 Properties of the irregular sampled DFT

PROOF of Theorem 2.1(i) To reduce cumbersome notations we first give the proof for
d=1.

The proof of (ia) is clear since E[Z(s)] = p and E[e*“*] = (0 when k # 0. To prove (ib)
and (ic) we use the straightforward observation cov[J*(wy, ), J*(Wk,)] = E[Jn(wWi, ) Jn(wr, ).
To prove (ib) and (ic) we use that 2,7y = (Z; — p)(Za — p) + (21 — p) + u(Zy — ) + 2,
which gives the decomposition

In(Wiy ) In(wiy) = Ap + Ag + Az + Ay + As, (1)
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where
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We observe that E[A;] = 0 and E[A3] = 0. If k; = 0 and ky = 0, then E[Ay + As] = A2,
if k1 # ko, then E[Ay + A5] = 0, finally if k&; = ko (but k; # 0) then E[A4] = 0 and
E[A5] = A2 /n. Since Ay + As = E[J,(wk, )]E[Jn(wk,)] using the above immediately proves
(ib) and (ic).

To prove the second part of (i) for convenience we assume p = 0 and make the decom-

position
cov [‘]n<wk1)7 Jn(ka)} =T + 1,
where
A . )
Ty = —cov[Z(s)exp(iswy, ), Z(s)exp(iswy,)]
n
Ty = Aeacov[Z(sy) exp(isiwy, ), Z(S2) exp(isowy, )]

and co = n(n — 1)/2. We first analyse T7. We see by using conditional expectations and
second order stationarity that

A A 1 A/2 ) Ac(0) k — k
T, = C(O)E [exp(is(wr, — wi,))] = C(O>—/ 13k —wks) g — { " ! ’ (2)
n noA —)\/2

Next we analyse T,. By using conditional expectations we have
cov[Z(s1) exp(isiwy, ), Z(52) exp(isawp, )] = Elc(sp — s9)e' 19 —520k2)],

Writing the expectation as an integral, making a change of variables t = s; — s5 and decom-



posing the integral over ¢ into three parts give us

1

T, = —/ c(s1 — s2) exp(isiwy, — 1Sowy, )ds1dss
A Ji=a202)

1 )\/2
= X / eXp(isz(Wkl
—)\/2

= T+ Toy +Th3

where
1 M2
Ty, = X/ exp(isa(wy,
—A/2
1 A/2
Ty = X/ exp(ise (W,
—A/2
1 (M2
Toy = X/ exp(isa(wy,
—A/2

A/2—s2
) / §
—A/2—s9

f;
~ ) [ /

A2
) /
)\/2—82

c(t) exp(itwy, )dtdss

c(t) exp(itwy, )dtdsy

A2
c(t) exp(itwy, )dtds,

c(t) exp(itwg, )dtdss.

Applying the same argument used on T} to T5q, it is clear that

0
Ty, —
2t { f)ﬁ? ) exp(itwy, )dt =

ki 7 ke

flwr) +0(5) ki=ko=k (3)

T5; is the leading term, we now show that 75 and T53 are the approximation errors, where

T22 = O(%) and T23 = O(%)

Partitioning the outer integrals in Ty and 753 into positive

and negative parts gives Thy = Tho1 + Thoo and Th3 = Th31 + Thze, Where

1[0 ,
Toor = X/ eXP(252(wk1
A/2

1 AJ2
Tore = X/ exp(isg (Wi,
0
and
1 0
Tog1 = X/ exp(isg(wy, —
22
1 M2
To3e = —/ eXp 1S9 wkl
A Jo

e [,

—)/2
) /
—A/2—s2

A2
c(t) exp(itwy, )dtdsy

c(t) exp(itwy, )dtdsy

c(t) exp(itwy, )dtdsy

A2
i) /
A/2—s2

A2
i) /
A/2—s2

c(t) exp(itwy, )dtdss.



For T55; we have

A/2—s2 A2 pA/2 1 /2
Tho1| < / / (t)|dtdsy = / / (t)|dtdse = / |sc(s)|ds
a2 -2 A/2— 32 A 0

—_—

follows from integration by parts

A

1

A/2
< 5[ lhstels =00,

For T595 we have

A/2 A/2—s2 A2 A/2—s2
|Theo| < / / |Bass(t)|dtdsy < / / dtdsg O\ ™).

A/2 A/2

Thus we have T = O(5). Using identical methods we obtain Ths = O(3). Altogether this
gives Theorem 2.1(i) for the case d = 1.

We give a rough outline for the case d = 2, where we show

COV[J (wkl y Wy )7 ‘]n (wkl-i-h y Wkt )]

O(52) r1 # 0 and r9 # 0
= O(3) r1 =0and ry # 0 or 1 = 0 and r # 0.
f(wkl,wk2)+0(§+’\;2) ry =0 and ry = 0.

As in the one-dimensional case we make the expansion

COV[JH (w/ﬂ » Wy ) ) Jn (wk1+7“1 y Who 1o )]

An(n —1 . . .
= %E [c(uy — ug; v — va) exp(i(ug — ug)wg, — tuswy, + (V] — Vo)wi, — VoW, )]
/\2
+ EE [c(0,0) exp(—iusw,, — ivaw,,)] .

-~

2
=220.0) 1 =0) I (r2=0)

We first consider the case r; = 0 and ro = 0. By a change of variables u = u; — uy and

v = v; — Uy We have

Var[J (Wk1 , Wy )]

)\/2 /\/2 U1 )\/2 )\/Q—ul . )\2
= s / / vakg / / c(u; U)ezuwkl ducluldvl + O(—)
n )\ 22 J=xa/2—v A2 J=x/2—uy n



Successively, changing the range of the integral [~ ’\132 u; to [~ A//\jQ and [7 )‘52 v; to f_/\ﬁ? gives

)\2
Var[‘]n(wk’nwkz)] = C2f( (wkuwkz) + R+ Ry + O( n )

where

1 [N2 N2 a2 A2 ‘ '
N / / c(u, v)e ™k %s dydy
A S am e Soxge Joage

Y,

/.
Cs 2 A/2—v2 A/2 A/2—uy A/2 )
R, = 2/ / “’“”@/ (/ —/ )c(u,v)ew“’“lduduldvdvl
A/2 A/2—v1 —-\/2 —\/2—u1 —-)\/2

N2 A2 A2 A/2—v1 A2 ‘
““”’“1/ (/ —/ )c(u,v)e””@duduldvdvl.
—A/2 a2 \Jrz—e Jong2

f()\) (wkl y wkg) =

and Ry =
—)/2

By using the equality

A/2—uq ) A2 ) —\/2 A/2—uq )
/ c(u,v)e“‘“’kldu—/ c(u,v)e™Fdu = / —I—/ c(u,v)e"™rdu (4)
—A/2—uq —-\/2 —\/2—u1 A2

and identical methods to those in the case d = 1, it can be shown that Ry = O(A™'). Tt is
also straightforward to show that f®(wk,,wk,) = f(wk,,wk,) + O(3). Altogether this gives
Var[Jn(wkmka)] = f(wk‘nwk?) + O(% + >;L_2)

Using the same method we can show that cov [J,(Wk,, Wky)s Jn(Why 1115 Whatre )] = O(ATL),
if either 7y = 0 and o # 0 or r; # 0 and o, = 0.
However in the case that r; # 0 and 5 # 0 we can show that the correlation decays at a

faster rate. Again by changing the limits of the integral we have

cov [‘]n(wkpwkz)a ‘]n(wk1+rl7wk2+7"2>] = Rl + RQ - R3

where

o M2 A2 ' N2 A2
Rl — _2/ / _Wlwﬁ"'“’l“’w/ u ’U Zuwk1+lvwk2 dudvduldvl
-x/2J=x/2 -X/2J=X/2

0 2 Ao A2 Na-u A2 |
Ry = —2/ e s / ek / e N (/ —/ )C(Ua v)e"™r duduy dvdvy
A S 2 —2/2-u1 —x/2 “N2—ur J-a)2

o M2 A2 pA/2 A/2—v1 A2 ‘ A
Ry = —22 e "en / / e (/ —/ )c(u, v) ek Tk dyuduy dvdu, .
A —)\/2 —a2J-x/2 —X/2—v1 =A/2

Since m # 0 and 7o # 0, it is clear that Ry = 0. Furthermore, because r; # 0 we also have



R3 = 0. Therefore the only non-zero term is Ry. By using (4) we decompose Ry = Ry1 + Raa,

where
02 A/2 A2—v A2 /2 .
Ry = — e‘“’“"m/ e“’“”%/ e_“““”/ c(u, v)e"“* duduydvduy
—X/2 —X\/2—v1 —-)\/2 —X\/2—uq
A/2 A2—vr A2 A/2—uy '
Ry = — / —iviwr, / e"Vk2 / e vn / c(u, v)e™“ 1 duduy dvduv; .
/\/2 —A/2—u; —)/2 A/2

We now bound Ry;. We exploit that ro # 0, by subtracting off the same term but with

f,\)/\jz vll replacing f_/\)/jQ (since this is zero) into Ry
A2 A2-v1 A2 —\/2 .

Ry = —/ ’”1“T2/ ew”’%/ e W / c(u, v)e™ 1 duduy dvduoy
)\/2 —>\/2—’U1 —-\/2 —A/2—uq

A2 A2 A2 —A/2 .
——/ _“’1”“2/ e”’w’%/ 6_“““”/ c(u, v)e™“ 1 dudu, dvduy
/2 )2 A2 N2—uy

A/2 A2 A2 A/2—v1 A2 ) )
= — / fzulwn / / *’L’Ulld’rg (/ _ / )c(u, ’U)@wwk? —UWE, duduldvdvl.
A/2 )\/2 ul /2 —A/2—v1 —-\/2

By substituting (4) into the last integral above we have

c A/2 A/2 A/2 —A/2 A/2 ‘ ‘
Ry, = _22 e~ tiwry / / e 1wry (/ + / >c(u, U)ewka_wwkl dudu, dvdv, .
A —-X/2 A/2—uq A/2 —X\/2—v1 A/2—v1

()
Using the same method we can show that
A2 A2-ui  pA/2 —)/2 A2 4 '
— 4 / —lu1t.dr1 / / Z’U10Jr2 (/ _'_/ )C(u, v)el’uka—’Luwkl dudU]_dvd’U]_.
A/2 A/2 )\/2 —A/2—v1 A/2—v1
(6)
Thus by using that cov[J, (wk,, Wk, ), Jn(Wrky4r > Whatrs) | = Ra1 + Raa, (5) and (6) we have

COV wk1 ) wkz J (w/ﬂ 411 Wha+ry )}

A2 A2 ‘ /2 A/2—uy )2 A/2—u1
/ / —lUIUJrl e—l'Ulka ( / _I_ / ) X ( / _l_ / )
)\/2 22 No2—ui Iz “a2—e Jag2

x c(u, v)e™ i T0%s dydydu doy .



Thus we have

‘COV wkl ) ka J (wlﬂ +r1o wk2+T2) ’

A2 pA/2 “)/2 A/2—uy A2 A/2—v1
< / / (/ —I—/ )(/ +/ )ﬁg+5(u)ﬁg+5(v)dudvdu1dv1
A2 J a2 A2—u;  JA/2 “A2—v1 JA)2
402 A2 A2 )
< / |uv| Bars(u) Boys(v)dudv = O(N™*).
—x2J a2

Thus, we have shown the result holds for d = 2. It is straightforward to generalize these
arguments to d > 2, which gives the desired result. 0]

PROOF of Theorem 2.1(ii) We prove the result in the case d = 1 (noting that the proof
for d > 1 is the same). Using that cov[Z(s1), Z(s2)|s1, S2] = ks, (s1 — $2) we have

AoV (S (Wi, )y Jn(Wiy)) = AE | kg, (51 — s2) exp(i(s1 — s2)wk, ) + iS2(wky, — Wk, ))
—i—%E [ks,(0) exp(isy(wg, — wr,)] -

By writing the expectation in terms of integral, changing the limits of the integral and using
the same arguments as those used in the proof of Theorem 2.1(i) we have

Acov [ (wky ),y Jn(wry)] =
1 A2 ) )\/2 ) )\ 1 AJ2 ) 1
= X/ ew“”ﬂ—kz/ Ks(t)e™r dsdt + _(X/ e“‘“kl—kzlis(O)dS> + O(X)

—)\/2 —A/2 n —)/2
1/*/2 (ks ) & A(l/w . ) 1
= - e mITRIX f(wr s)ds + — | — eWki—k2 i (0)ds | + O(=),
v s+ (5] (0)ds ) +0(5)
which gives the desired result. 0

3 Proof of results in Section 3 (of main body)
PROOF of Theorem 3.1 The result follows immediately from Subba Rao [2014], Lemma
3.1(ii) for the case r € Z4/{0}. O

PROOF of Theorem 3.2 The proof follows immediately from Subba Rao [2014], Theorem
3.2 and Lemma 3.2. ]



PROOF of Theorem 3.3 Asymptotic normality of EA(g;r) follows from Theorem 3.5,
Subba Rao [2014]. O

PROOF of Lemma 3.1 Using the standard bias/variance decomposition we have
E[\(S) — eni)” = var[B(S)] + (B[AA(S))] = ean)” (7)
To simplify notation, we let A(r) = g,\(g; r) and write ¢)(S’) as
~ 218 \a xo
— A%
AS) = 2|5f 7 2 AP~ g
res’
Substituting this into (7) gives the bound

E[(S) —cn]” < 2var (2\8’ Z |A(r ) + 2c%var (A7 A?)

res’

<2|S’ 7D Al > oM

res’

2

+2 +2c% VE (4], ©8)

where csr = [1—(2|S'|—1)7!] = 1 as |S'| — oo. We first show that \E|A|> — 0. Partitioning

A(r) into real and imaginary parts we observe that

(2|f\9,|) Z (E[RA(r)RA(r))] + E[SA(r1)SA(rs)] + 2E[RA(71)SA(12)])
r1,r2€S’

=1+11+1I1.

MNE(A?) =

We obtain a bound for I, noting that similar bounds can be obtained for I and I71. Writing

the expectation in terms of first and second order cumulants we have

I= (2|:\9W Z (cov[RA(r1), RA(r2)] + E[RA(r)|E[RA(72)]) = I + L5.

r1,r2€S’

To bound I; we use Theorem 3.2 to give

1
I, = Ean .
' <|8|'+ . )

The bounds for E[RA(r)|E[RA(r3)] (elements in I5) depend on whether the vectors r; and
ro contain zero (noting that we have placed the constraint that at least half the elements in

the vector r are non-zero). Therefore we partition S’ into the set of vectors which contain



zeros, Sy and its complement S;. Using this decomposition and Theorem 3.1 we have

1ISi]?  [SollSi] | S0l
I, = — .
2 =0 ()\d KIE + )\[d/2]|5/‘2 + KIE

Therefore I = O(ﬁ + 0y an+ % Eﬁ“; + M‘j%l%h? + E‘?'j) Similar bounds can be obtained for

Il and I11. Altogether this gives

(9)

2 2
AdE(AZ)=O(|§|,+Am+ LIS | 1SllSi] | [Sol )

\ S/[2 )\(d/21|3/|2 |S7]2

By using a similar method and Theorem 3.2 we can show that
|Sol

Ll
| <2|8/| -1 Z |A(r ) Cx1 ( S|’ Z S| +€A7a7n> . (10)

res’ res’
Now we bound the two variance terms in (8). Expanding VEM"(Q‘S’\,—T_1 Y ores |A(T)|?) gives

Va<2|8/ Z|A )

+—+

)\Qd e 2 )\Zd
— _(2‘8” — 1)2 TI;S, 2 |COV(A('I”‘1),A(’I“2))| (Q‘S’T 1.121.2 cum [ (rl) A('rl) A(TQ), A(Tz)}
+ (2|Sl)i _ 1)2 Z (Cum[A('rjl)? A(rj1)7 A(rjz)]E[A<rj2)] + Cum[A(le), A(Tﬁ)a A('I"j2)]E[A(’I"j2>]> .
r1,72€S’

By using Theorem 3.2 and Subba Rao [2014], Lemma C.4 we have

1 log4d(a) |So|
var (2’5/ Z ‘A ) (g)\,a,n + ’5/‘ + X + |S’|>\[d/2] . (11)

1'68’

We note that we obtain similar bounds as the above when analysing var ()\dAQ). Therefore,
by using (9)-(11) we obtain the desired result. O

4 Proof of results in Section 4 (in the main body)

In the following proof we require the following result

/ |sinc(u)sinc(u + x)|du < ¢1(x) and ZE (m+71) < Llprgra(r), (12)



where for some C, and p > 0, {,(z) = log? |z|/|z| for |z| > Ce and £,(z) = Ce for |z| <e (a
proof can be found in Subba Rao [2014], Lemma B.1). We will also make heavy use of the

representations

K <31 — So; S)\Z) = (271r)d /Rd f(w; %) expliw’(s1 — 82)]dw (13)

and

]7<w; ;) _ Z C5(w) exp (227TS .7) Z Gj(w)exp (i27s w]) (14)

jezd jeza

PROOF of Theorem 4.1, equation (8) Taking expectation gives

a

E [ﬁk(g;r)] = G Z 9(wk)E [75 <31 — 82; %) exp(iw),(s1 — 82) exp(—iw,.s2)| ,

k1,....kg=—a

(15)

where ¢o = n(n—1)/2. To simplify notation we prove the rest of the result in the case d = 1.
We first replace k(s — s2,82/A) in (15) with its representation (13) to give

E[4,(g; 7))

= q( k)/ —/ f(w;52/A) exp(isi(wi — 7)) exp(—isz(Whyr + T))dxds dsy.
21 —oo A J1Ca2 022
k=

To show E[ﬁ/\(g; )] — A(g; ) we replace f(x;s2/A) with its Fourier transform to give

EAy(gin)]= = 5= Z Z g(wy / 2/ Cjx)em sz gior (i) gmis2 (@it ®) g s,
[=A/2,A/2]2

k*—a j=—00

= = Z / Gz wk)sinc()\—; — k:w) sinc<)\2—x +(k+r— j)w) dz,
j k=—a

]_—OO

where sinc(z) = sin(z)/z. By using a change of variable, u = 2 — k7, we have

E[ﬁ)\(g;r)] = Z /OO ! Z ¢ (2u —I—wk) g(wy)sinc (w)sine (u + (r — j)7)du (16)

j—foo

V o (2; ’ w) ! <w)d°"] sine(u)sine(u + (r — j)m)du + O(3),

27ra//\

]_—OO
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where the O(A™!) arises because we have replaced a sum with an integral. We decompose
the above sum as E[A\A(g; r)| = Iy + Iz + O(A71), where

Iy = 277 Z / / QM/A ( +w) g(w)sine (u)sinc (u + (r — j)m) dudw

‘ ‘< 27I'(Z/A

27ra/)\
Ip =

( + w) g(w)sine (u)sinc (u + (r — j)m) dudw

—2ma/A

and c is some integer value greater than |r| (at the end of the proof we specify exactly what ¢
should be). First we show that I is asymptotically negligible. Under the stated assumptions

2wa/A U . . cp - . .
we have, | [~ 27rc/1/)\ G(3 + w)g(w)dw| < sup, |g(w)|¢(j) (noting if j # 0, then £(j) = C/j).
Substituting this into Ir and using (12) we have

Il < supwfg |Z]]|/ |sinc(w)sine (u + (r — j)m)|du

lj|>e

IN

supw|g )| logj—r B log(c+j—1) log(c —r)
) vrs M DY v ey s Ky ey

l7]>c l7[>1

for some finite constant C'. Next we consider I);. By adding and subtracting ¢;(w) we have

IM = [Ml —|—IM2, where

Ca 2ma/X < . .
Iy = Gr)n Z/ Cj(w)g(w)dw/ sinc(u)sinc(u + (r — j)m)du

lj|<e —2ma/A —00

I =

snc(upsinc(n+ (=) [ (6 +@late) = wlgle) ) .

—2ma/A

||<

We will show that I — 0. To do this we start by bounding the integral inside the sum.
By using Subba Rao [2014], Lemma B.2 we can show that

‘ /Z sinc (w)sine (u + (r — j)) /QW/A (Cj(%u + w)g(w) — Cj(W)g(W))deU,

2ra/\

] log A +log|r — 7
SCE(J)SHMQ(W)I( S & j’)-

A

11



Substituting the above into Iyo gives

|Tne| <

log A + log |r — j| + log(A + |r — j])
) suplg(e) .
||<

0 (logc [1ogA+1o§(|r| + |c|)]> |

Altogether the bounds on I, and I give
B[4, (g:7)]
Co 2ma/A < ‘ .
— e Z /_ Cj(w)g(w)dw/_ sinc (u)sinc (u + (r — j)m)du

lil<e 2ma/\ 0
+0( 10ge |8 AFloellr +leD | logle =]
A lc—r|
1 [2ma/x log A + log(|r| + |¢|) log |c — 7|

where the last line of the above follows from the identity ffooo sinc?(u)du = 7 and if r # 0
then [°°_sinc(u)sinc(u + r7)du = 0. Finally, by choosing ¢ = (A +r) we obtain

E [EA(Q;T)} _ /_%/A (r(w)g(w)dw + O <w> |

2m 2ma/\ A

which gives the desired result. O

PROOF of Theorem 4.1, equation (9) To simplify the notation we prove the result for
d = 1. Expanding cov[fl,\(g;rl),ﬁ,\(g;rg)} gives

o~

Acov[Ax(gim1), Ax(gira)] = Ap + A+ A,

where by conditioning on the locations we have

AH - 04)\ Z g(wkl)g(wk2)E [eiwk1(51782)67iwk2 (53754)67i52wrl+i34wr2

12



A12 _ 04)\ E wkl )E [eiwkl (sl—sz)e—iwk2 (83—54)6—1'520.)r1 +isawry
k1,ka=—a

- S S
XK(s1 — 84; XA‘)/@(SQ — 83; —4)] ,

A

and

/\ 1S5 W —18i, W
Ar=2 Z (@) g(@r) OV [Z(55,) 2 (s5,) €590 ¢~ i%sm9k1 1

n- .
J1,32,33,J4€S3 k1,ka=—a
Z(Sjl )Z(Sjé )6i5jlwkl e_ismwkl+ﬁ}

where ¢y = n(n — 1)(n — 2)(n — 3)/n* and Sz = {(J1,Jo,J3,Ja); 1 < Ji,-- a0 < n,j1 #
Jjo and j3 # j4 but at least two j’s are same}. By using similar arguments to those given in
Subba Rao [2014], Lemma C.1, it can be shown that Ay = O(A/n). Below we will show that
Aj; and Ajy are the leading term.

We will obtain a bound for A;;. Replacing k(s; — s3; %) and K(s2 — s4; ) in Ay with

the representations given in (13) we have

a

o C4/\ 83 54 w o
= i [ T i) Y i

k1,ka=—a
Xezwkl(sl $2) zslxezsz Y—wry ) —283(x+wk2) is4(— y—i—ka—i—wrQ d81d82d53d54d$dy

Next we use Assumption 4.1 to replace ]7(93, %) and f(y; ) in the above by their Fourier

representations given in (14)

Cy
A — / / / C ) 153(.«.;]14« 1340.)]2
! A3 (2m)? [—A/2,)/2]4 Z ! R(y)e

J1,j2=—00

< § : Wkl wk2 )ezwkl (81782)6181$6182(y7w7ﬂ1 )67133(:v+wk2)
k1,ko=—a

« 6is4(—y+wk2 +wry) dSl d32 d83 d84dl'dy

_ C“ DY / / S ¢ (@) () (e )lamsine (%—l—kﬂr)x

J1,J2 © k1 ,ka=—a

sinc (% — (k1 + 7’1)71') sinc (A; + (ko — jl)ﬂ') sinc <% — (ky+ 19 + jg)) dzdy.
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Changing variables with u = ’\2—7” + ki, v = % — (k1 4+ r1)m and m = kg — ky gives

All = % Z/Z/ Z C]l ()\U wkl) <j2 (% - wk2+r1) g(wlﬂ)g(wlm)

J1,J2  k1,ka=—a

Sinc(u)sinc(v)smc(u + (ko — ki — ji)m)sinc(v — (ko — ki 4+ ro — 11 — ja))dudv

asy | [ sinctwpsinc(w)sinetu + (m — uym)sinc(o = (m + 12 = 11+ 1)

m_*2a J1,J2

x H™ (u, v)dudv,

J1,J2

) 1 min(a,a+m) \u o
H]1 J2 (u,v) = by Z G o Wiy | G o Wrytry | 9( Wkt )G (Why4m)-
)

k1=max(—a,—a+m

We start by bounding H ](1 ])2( v). Using that sup, |8<J | < ¢(j), we replace the summand

in HJ(1 j)g(u, v) with its integral to give
2wa/A \u 1
H™ — , ks —w, m)dw + O [ ——— ).
J1,J2 (u7 U) /271-a/)\ gjl ( 2 > CJQ ( —w w 1) g(W)g(W + w ) w + ()xf(]ﬂf(]g))

Therefore, under Assumption 4.1(i) we can show that

C /gﬁ (ATU - w) Cjz (% — W= wm) g<w)g(w + C'L)m)d(’u

< ngp\gw)l?e(jl)/f(jz)-

sup [H, (u,v)] <

Substituting the above into A;; gives the bound

m==2a ji,j2

X / / |sinc(u)sinc(v)sine(u + (m — ji)m)sinc(v — (m + 7o — 1 + Jj2))|dudv.
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Finally, by using (12) we have

|An| < C Z Zf(ﬁ)f(h)fl(m—]1)51(m+7”2—T1+jz)

j1,j2=—00 m=—a

C Z ( Z (41l (m —j1)> < Z C(j2)li(m + 1y — 1 +j2)>

m=—a \j1=—00 Je=—00

IN

a

< Z lo(m)la(m + 1y — 1) < L5(rg —11).

m=—a

A similar bound can be obtained for A;,. Altogether this proves that in the nonstationary
case (using rescaled asymptotics) we have A|cov|[Ay(g:7), Ax(g;7)]| < C5(r1 — r2) + O(A/n).
It is straightforward to extend the above argument to d > 1. Altogether this proves (ii). O

We require the following corollary, which gives bounds on E\A\A(g; r)|, to prove Lemma
4.1. We note that we require this result because when d > 1, the expression for E|A,(g; 7)]

in Theorem 4.1, is not sufficient for proving Lemma 4.1.
Corollary 4.1 Suppose Assumption 4.1 holds. Then we have
(i) E|A\(gir)| < Cli(r)
(i1) Lpes [B (A7) < 2, Ty 1G1) < C 108 1S (10818 e — 108 i)

PROOF. To prove (i) we use (16) to give

Fian < 5 3 [,

Cj(ZTu + wi)g(wy)Sine (w)Sinc (u + (r — j))| du,

where Sinc(u) = [[&,sinc(u;). By using Assumption 4.1 we have I Yohe o 1G(B +
wi)g(wg)| < £(F). Substituting this into the above gives

‘ (A, ‘ <C’Z {Slnc w)Sinc(u + (r — j)m)| du < Cly(r)

jezd

where C'is a finite constant and the last line follows from (12) (which holds for both integrals
and summands). This proves (i).

To prove (ii) we use (i) to obtain

‘Sl|max

S EA I <> am <[ 3 Gl) | < C 0818 e (1081 s — 108 1S )]

res’ res’ 7=|8"| min

15



which proves (ii). O

PROOF of Lemma 4.1 To prove (i) we use the notation A(r) = XA(g; r) and expand
¢)\(8’) this gives

(S - A (- 12 1 (XA (o 112
EEAS) = E (2|8,|_1)EZ$([%AA(Q,T)—A] +[3Ax(g5m) — AP)
_ 24| yape
= (2\3/ §| e A ) <I+11,

where I and I are decompositions into expectations into first and second order cumulants

I = 2|8/|_12Var

res’
n d
|5A\ >~ leov[RA(r), RA(r2)] + cov[SA(r), SA(rs)] + 2cov[RA(r1), SA(r2)]|
r1,r2€S’
1 = 2|5/ Z;IE
+% 3 ‘E[%A(ﬁ)]E[&RA(rz)] + E[SA(r)[E[SA(ry)] + 2E[RA(r) E[SA(r,)]
r1,72€S’

and ¢ = 1 — (2|8'] — 1)~!. By using Theorem 4.1(ii) it is straightforward to show that
I = 0O(1). To bound I we use Corollary 4.1. Corollary 4.1(ii) gives a bound for the second
summand in I7 and Corollary 4.1(i) gives a bound for the first summand. Using these bounds

we have

[log |S/|max (10g |Sl|max log |S/|min)]2d

11 S 2|3/| Z

res’

A 1082 [ e A N )
A 08 [ + (log\S’]maxlog [’ ) )

IS’I2

C

|8/‘ |8l‘min |‘S/|2 |8/|min

Thus the bounds for [ and I altogether give

dl 2 /! d / 2d
)\ Og |8 |IIIE%X + A (log |S,|max log ‘S ’max) ] ) ’

Ea(S) =01+ |22k : ;
o) ( ST ISP o

this proves (i).
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To prove (ii), we use similar expansions to those above to give

. A4 2|S
var[cy(S8')] < 2var <2|S’| 7 Z |A(r ) + 2var <2|S|’|——|1)\dA2) =111+ 1V.

res’

We first bound 171, expanding the variance we have

var (2\8’ Z [ACr )

)\2d 2 /\2d
- mﬁ;gé [cov(A(r1), A(rs))| Wﬁzmcum [ (r1), A(ry), A(T2)7A<’r2)i|
+Wim Z (Cum[A(rJ'l)? A<rj1)7 A(TJQ)]E[A(sz)] + Cum[A(rj1)7 A(rjl)7 A(rjz)]E[A(rjz)D

= IIL + 11+ 1113

To bound [11; we use Theorem 4.1 to obtain the bound

2 AL\ 1A
< — — | = —.
11| < e > (65(7«1 T2) + n) =0 (‘S,’ + )

r1,r2€S’

To bound I115 and 1113 we require bounds on the third and fourth order cumulants. We
use the same method used Subba Rao [2014], Lemma C.4 and the techniques used to prove
(9) to give

log'a

cumg [A(r1), A(r2), A(r3)] = O ( \2d

) and cum4[A(rl),A(rz),A(rg),A(m)]:o(lof%) (17)

Using (17) it is clear that 111, = O(log® aA~?). To bound Il we use (17) and Lemma
4.1(i) to give

C'log a C'log*(a
1< S8 S LA £ S 1081 e (105 1S e — 108 ' i)

res’

Altogether the bounds give

1 A log®(a)  Clog*(a) [ | |inax \ |
111 <C - +—+ + - log | S’ | max <log - )} )
(!8\ ) ST [ & i

Finally, we note that a similar bound can be obtained for I'V. The bounds for /1] and IV
give (ii). O
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5 Detecting changes in the spatial variance

In the case that the locations {s;;j = 1,...,n} are not that dense on [—\/2,\/2]¢, Tss is
not very sensitive to changes in the variance. To address this issue in this section we consider
a method for simply detecting changes in the spatial variance. We do this by using Theorem
2.1 in the main body. We adapt the DFT J,(wy) to detect changes in the spatial variation
and define

) = = 37170 lexpl—isin),

j=1
where w, = 2m(%,...,%¢). Under the assumption that the mean of {|Z(s);s € R?*}
is constant over space, then by using Theorem 2.1(ia), for » # 0 we have E[vy(7)] = 0.

Furthermore, under stationarity and sufficient mixing conditions, by using Bandyopadhyay
and Lahiri [2009], Theorem 4.3, it can be shown if 1 <14 < j < m with r; # 0, r; # r; and
r; 7 —r; then

)\d/Q / D

S (Roa(r), S0a(r), - Ror(r), Sua(r) ) B N0, o)

V2
as AY/n — 0 when A — oo and n — oo, where f, = [o, c2(8)ds and cov[|Z(s1)|,|Z(s2)]|s1, 82] =
02(81 — 82).

Based on this result, we estimate the variance f, using a similar variance estimation

method proposed in Sections 3 and 4 of the main paper and define the maximal statistic as

! 2 1Sy ()|
Vs,.s' = ]?2(3/) ryr-leag: (’%UA(T)’ + ‘\9 )\( )‘ ),
where
T/on 1 Z 712 x 712
fQ(S) - (2|Sl| — 1) ~ ([§RUA<T) - ‘]] + [‘SUA(T) - J] ) )

S’ is defined in Section 3 of the main paper and J = ﬁ Y ores [Foa(r) + Svy(r)]. Using

the same arguments as those given in Theorem 3.3 of the main paper we can show that

D maX1§i§\$|(|Z§i—1 + 2222|)

Vs.sw — —
’ 1 2(IS|+1S'1) ’
2|8’|-1 Zj:2\5|+1 (Zj - Z)2

where {Z;;1 < j <2(|S| +|§’|)} are iid Gaussian random variables.

We now consider the power of Vs s/. We derive a result analogous to Theorem 4.1 in the
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main body.

Lemma 5.1 Suppose {Z(s);s € R} is a zero mean nonstationary spatial random process
where the covariance of the absolute process satisfies the assumptions in Theorem 2.1(ii).
Let o(s) = E(|Z(s)||s), then we have

1 o T
E[v\(r)] = X /[/\/“/Q]d o(s)exp <z27rs X> ds,

and

Meov [vr(r1), va(1T2)] = O <€(r1 —T9) {1 + %d]) for all ri,ry € 7.

PROOF Identical to the proof of Theorem 2.1(ii) in the mainbody. [
Using the above lemma and under sufficient conditions on the rate of decay of the spatial

cumulants, Vs s gives power results similar to 7s s

5.1 Simulations

We now consider the test Vs s (to detect changes in the variance). The results are given in
Table 1. Unlike 75 s/, we observe that when n is relatively large (n = 500,1000 and 2000)
there is an inflation of the type I error for larger (or even moderate) values of p. However,
the type I errors come close to the nominal for smaller values of p relative to .

For empirical power calculations, we recall that the models NS1 and NS2 in the main
paper are such that the variance is constant over the spatial random field. Therefore the
variance test Vs s would not have any power for these models. Therefore, to assess the
power of the test based on Vs s/ we define a nonstationary spatial model where the stationary
covariance is modulated by a spatially dependent variance, i.e., Z(s) = o(u)X(s), where

X(s) is a spatially stationary process.

(NS3) We consider a piecewise stationary model where the variance structure changes abruptly.
Suppose, [—A\/2,\/2]? is partitioned into 2 rectangles each with their own stationary
spatial process generated from the exponential covariance function, defined in Section

7.1.1 of the main paper, with p = 1, and variances 1 and 5, respectively.
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Gaussian log|Gaussian| Non-uniform
n n n

P 50 | 100 | 500 | 1000 | 2000 | 50 | 100 | 500 | 1000 | 2000 | 50 | 100 | 500 | 1000 | 2000
0.04 | 0.06 | 0.09 | 0.11 | 0.16 | 0.05| 0.06 | 0.10 | 0.15 | 0.20 | 0.03 | 0.04 | 0.04 | 0.05 | 0.04
0.04 | 0.06 | 0.10 | 0.11 | 0.16 | 0.05| 0.05 | 0.09 | 0.15 | 0.20 | 0.03 | 0.04 | 0.04 | 0.06 | 0.04
0.04 | 0.06 | 0.09 | 0.11 | 0.21 | 0.02 | 0.05 | 0.09 | 0.10 | 0.21 | 0.03 | 0.05 | 0.05 | 0.05 | 0.04
0.03 | 0.06 | 0.09 | 0.11 | 0.19 | 0.02 | 0.05 | 0.08 | 0.10 | 0.21 | 0.03 | 0.04 | 0.05 | 0.05 | 0.04
0.04 | 0.07 | 0.10 | 0.15 | 0.21 | 0.04 | 0.04 | 0.08 | 0.09 | 0.15 | 0.04 | 0.04 | 0.05 | 0.05 | 0.05
0.05 | 0.07 | 0.09 | 0.15 | 0.22 | 0.04 | 0.04 | 0.08 | 0.09 | 0.15 | 0.04 | 0.04 | 0.04 | 0.04 | 0.06
0.05 | 0.06 | 0.10 | 0.17 | 0.24 | 0.03 | 0.05 | 0.06 | 0.09 | 0.13 | 0.06 | 0.06 | 0.05 | 0.05 | 0.04
0.05 | 0.05 | 0.10 | 0.16 | 0.23 | 0.03 | 0.05 | 0.06 | 0.09 | 0.13 | 0.06 | 0.06 | 0.05 | 0.05 | 0.04
0.05 | 0.05 ] 0.09 | 0.12 | 0.17 | 0.04 | 0.06 | 0.07 | 0.07 | 0.09 | 0.04 | 0.05 | 0.06 | 0.05 | 0.05
0.05 | 0.05 | 0.07 | 0.13 | 0.17 | 0.04 | 0.06 | 0.07 | 0.06 | 0.09 | 0.04 | 0.04 | 0.06 | 0.06 | 0.05
0.04 | 0.04 | 0.06 | 0.07 | 0.05 | 0.04 | 0.05 | 0.06 | 0.05 | 0.06 | 0.07 | 0.05 | 0.04 | 0.05 | 0.05
0.04 | 0.04 | 0.06 | 0.07 | 0.06 | 0.04 | 0.04 | 0.06 | 0.07 | 0.06 | 0.05 | 0.05 | 0.04 | 0.05 | 0.04
0.04 | 0.04 | 0.06 | 0.06 | 0.04 | 0.04| 0.06 | 0.06 | 0.06 | 0.04 | 0.03 | 0.04 | 0.06 | 0.05 | 0.06
0.04 | 0.04 | 0.05 | 0.06 | 0.05 | 0.04 | 0.06 | 0.06 | 0.06 | 0.04 | 0.03 | 0.04 | 0.05 | 0.05 | 0.06

4/3

1

2/3

1/3

1/10

1/20

Table 1: Empirical type I errors (at 5% level) based on Vs s with A = 5 for Gaussian,
log |Gaussian|, and data with non-uniform locations based on stationary correlation func-
tions. For each p the first row corresponds to the original data and the second row corre-
sponds to the data with measurement error.

Gaussian log|Gaussian|
n n
Model | A | 50 | 100 | 500 | 1000 | 2000 | 50 | 100 | 500 | 1000 | 2000
NS3 |5 0.05 | 0.07 | 0.17 | 0.36 | 0.57 | 0.04 | 0.07 | 0.08 | 0.12 | 0.14
0.05 | 0.07 | 0.17 | 0.35 | 0.57 | 0.04 | 0.07 | 0.08 | 0.12 | 0.14

Table 2: Empirical powers based on Vs s for the non-stationary model NS3 with uniform
locations. The first row corresponds to the original data and the second row corresponds to
the data with measurement error.

6 Ozone diagnostic plots

Below we give the diagnostic plots for the maximum daily ozone. We calculate ¢)(S’) using
g,\(g; r), where &’ contains 4 nearest points to the origin (i.e., four squares out from the

origin).
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Figure 1: 6th April 7ss = 18.79
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Figure 2: 15th April 7ss = 21.9
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Figure 3: 20th April 7s s = 12.11
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Figure 4: 24th May 7Ts s
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Figure 5: 26th June 75 s = 11.39

Figure 6: 21st July Tss = 14.7
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Figure 7: 22nd July 7s.s = 15.09
Figure 8: 3rd August 7s.s = 14.35
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Figure 9: 4th August 7s s = 15.21
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Figure 10: 6th August 7ss = 15.71
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Figure 11: 24th September 75 s = 11.57
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Figure 12: 25th September Ts
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5.83

5.83
T T T T T
4 2 0 2 4
_ 5.83
= 0
N -5.83
T T T T T
4 2 0 2 4

Figure 14: 27th September 7s s = 19.76
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Figure 15: 28th September 7s s = 33.43

Figure 16: 29th September Ts s = 24.82
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Figure 17: 30th September 75 s = 7.89
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