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Abstract

The strong mixing property for a sequence of random variables is interesting in its own right. It is

discussed that under what conditions the strong mixing property holds for linear stochastic processes

and in particular ARMA processes. Then an example of Non-Strong mixing Autoregressive Processes is

discussed here.
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1 Introduction

In order to be able to state our results precisely, let us start with a review of mixing conditions. Let

{Xt : t ∈ Z} be a sequence of random variables on a probability space (Ω,F , P ). Let Fm
n = σ{Xt : n ≤ t ≤ m}

be the σ-algebra generated by the random variables {Xn, · · · , Xm}. Define

α (m) = sup |P (E ∩ F )− P (E)P (F )|, (1.1)

where the supremum is taken over all E ∈ Fn
−∞ , F ∈ F∞

n+m and n. We say that {Xt} is strong mixing

if α (m) tends to zero as m increases to infinity.

The strong mixing condition was introduced by Rosenblatt in 1956 to prove the central limit theorem

for ‘weakly dependent’ random variables. Since then it has assumed a position of considerable importance

in probability theory. This is due to its tractability in the derivation of asymptotic properties of various

functions of sequences of dependent random variables. Its areas of application are wide and include central

limit theorems, strong laws of large numbers, laws of iterated logarithm, empirical processes, order statistics

and robust estimators. Although the strong mixing condition has been widely adopted in the literature, a
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clear understanding of the condition itself is lacking. The categorization of well-known processes as strong

mixing or non-strong mixing is still far from complete. However Chanda [1974] has shown that members

of the important class of linear stochastic processes are strongly strong mixing, provided they are based on

innovation random variables which have Lebesgue-integrable characteristic functions. The latter condition is

not superfluous. Withers [1981] has given some conditions for a linear process to be strong mixing. Ibragimov

and Linnik [1971] and Chernick [1981] give examples of first-order autoregressive (AR(1)) processes based

on discrete-valued innovation random variables which are not strong mixing. Unfortunately, their proofs

are by contradiction, and do not give much insight into the reason why the strong mixing condition fails.

But Andrews [1984] shows that certain AR(1) processes are not strong mixing by explicitly constructing

sequences of sets which violate the strong mixing condition. Again, Athreya and Pantula [1986a] have shown

that a Harris-recurrent Markov chain on a general state space is strong mixing, provided there exists a

stationary probability distribution for that Markov chain. They have also established that certain stationary

autoregressive moving average(ARMA) processes are strong mixing (See Athreya and Pantula [1986b]).

2 Results

2.1 Strong Mixing Properties of Linear Stochastic Processes

2.1.1 Results for The Univariate Linear Stochastic Processes

There are a lot of articles on the strong mixing property of linear stochastic processes. Chanda [1974] has

given rate of strong mixing of a linear stochastic process under some conditions. The main result of that

article by Chanda is given in the following theorem.

Theorem :Let {Zt : t ∈ Z} be a pure white noise process with γ = E
{
|Z1|δ

}
< ∞ for some δ > 0.

Assume that the characteristic function of Z1 is integrable, (2π)−1
∫
|φ0(u)|du ≤ 1, and let {Xt : t ∈ Z} be

a linear process defined as Xt =
∑∞

j=0 gvZt−v, where
∑∞

v=0 v|gv|λ <∞, λ = δ(1+ δ)−1; then Xt is strongly

mixing in the sense that

|P (A ∩B)− P (A)P (B)| ≤Mβ(k), (2.2)

for all A ∈ F0
−∞ , B ∈ F∞

k where M is a finite positive constant depending only on φ0 and

β(k) =
∞∑

v=k

v|gv|λ,

By a pure white noise process the author means that the random variables Zt are independent and

identically distributed.
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In order to prove this theorem the author first proves a lemma which is as follows:

lemma :Let

Wt =
t−1∑
v=0

gvZt−v, k ≤ t ≤ k +m− 1, (m ≥ 1);

W = (Wk, · · · ,Wk+m−1). Assume that the characteristic function φ0 of Z1 is integrable. Then the d.f.

of Wt admits a p.d.f. ft which is bounded and continuous everywhere. Similarly, the d.f. of W admits a

p.d.f. fk,··· ,k+m−1 which is bounded and continuous everywhere.

Now using the lemma the author has proved the result for any Borel set C in the space of {X−p, · · · , X0}

and any arbitrary disjoint union D of intervals in the space of {Xk, Xk+1, · · · }. Let C be the class of inverse

images of all Borel sets in the space of {Xk, Xk+1, · · · } for which (2.2) holds. Then the following result holds.

If B ∈ C, Bc ∈ C; also if {Bn} is a monotone sequence of sets ∈ C then limBn = B ∈ C. The result follows

from the property of probability measure because if we write X−1(C) = A, Y −1(Dn) = Bn then

|P (A ∩Bn)− P (A)P (Bn)| ≤Mβ(k),

implies that

|P (A ∩B)− P (A)P (B)| ≤Mβ(k),

where B = limn→∞Bn. Further C ⊃ M which is the field over the inverse images of all intervals in the

space of {Xk, Xk+1, · · · }. Therefore C is a monotone class over the field M, and hence C = F∞
k . Since C is

arbitrary so that X−1(C) ∈ F0
−∞, the result of the theorem follows immediately.

If {Xt} is a stationary Gaussian (without being necessarily a linear process) then Rozanov [1967] has

proved the process is strong mixing, provided the spectral density function f(µ) of the process exists every-

where and is continuous and non-vanishing over [−π, π]. If, additionally, logf(µ) is integrable over [−π, π]

then by virtue of Wold’s decomposition theorem (see Doob [1953]) {Xt} is regular, without any singular

component and hence is a linear process. But the result proved by Chanda [1974] holds for any linear process

with or without any second order properties and covers both Gaussian and non-Gaussian processes.

After some years, Gorodetskii [1977] points out that Chanda’s result is wrong and gives a counterexample.

He then corrects the result of Chanda by adding more conditions (too complicated to give here) and manages

to avoid the assumption that the {Zt} are identically distributed.

Withers [1981] gives an alternative set of conditions for linear processes to be strong mixing based on

Section 7 of Withers [1978]. The theorem is as follows:
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Theorem : Let {Zj} be independent r.v.s on < with characteristic functions {φj} such that

K = (2π)−1 max
j

∫
|φj(t)|dt <∞, (2.3)

and for some δ > 0

γ = max
j
E|Zj |δ <∞ (2.4)

Let {gj} be complex numbers such that

Gt = St(min(1, δ))max(1,δ) → 0 as t→∞,

where

St(δ) =
∞∑

v=t

|gv|δ,

Then for all t, Xnt =
∑n

j=0 gjZt−j converges in probability to a r.v. Xt as n→∞. Suppose

M0 = sup
m,s,k≥1

sup
α,β,ν

max
t

∣∣∣∣∣∣ ∂∂νt
P

W + ν ∈
s⋃

j=1

Dj

∣∣∣∣∣∣ <∞, (2.5)

where

Dj =
k+m+1∏

t=k

(αjt, βjt) ,Wt = Xt−1,t, Vt = Xt −Wt, ν = (νk, · · · , νk+m−1) ,W = (Wk, · · · ,Wk+m−1) .

Then for {Xt},

α(k) ≤ 2(4M0 + γ)α0(k),

where,

α0(k) =
∞∑

t=k

Gt

Corollary : Suppose that the conditions (2.3),(2.4),(2.5) hold and that

gk = O
(
k−ν

)
where ν > 1 + δ−1 + max(1, δ−1).

Then for {Xt} , α(k) = O (k−ε) where
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ε = (νδ −max(1, δ)) (1 + δ)−1 − 1 > 0.

Note : Theorem 2.1 yields (for the i.i.d. case) the weaker result ε = νδ (1 + δ)−1 − 2

2.1.2 Results for The Multivariate Linear Stochastic Processes

Chanda, Gorodetskii and Withers consider only the univariate case while Pham and Tran [1985] give a result

for the multivariate case.

LetX(t), t = · · · ,−1, 0, 1, · · · be a p-variate random process, Fm
n = σ{X(t) : n ≤ t ≤ m} be the σ-algebra

generated by {X(n), · · · , X(m)}. Let X = (· · · , X(−1), X(0)), Y = (X(n), X(n+ 1), · · · ) and PXY , PX , PY

be respectively the joint distribution Of X,Y and the marginal distributions of X,Y .

Define a function ∆n(x) by the condition that for any measurable set A of <p ×<p × · · ·

∫
∆n(x)PX(dx) = sup

|h|≤1

{∫ ∫
A

, h(x, y)[PX(dx)PY (dy)− PX,Y (dx, dy)]
}
, (2.6)

Now, ∆n always exists since the right-hand side of (2.6) defines a measure absolutely continuous with

respect to PX(dx). If the conditional distribution of PX
Y (dy|x) of Y given X exists, then ∆n is just the total

variation of PX
Y (dy|x)− PY (dy).

Let ‖∆n‖s be the Ls norm of ∆n. Then X(t) is said to satisfy the Gastwirth and Rubin condition if

‖∆n‖s → 0 as n→∞ for some 0 < s <∞.

When ‖∆n‖1 → 0 as n → ∞, the process is often referred to as absolutely regular, weakly Bernoulli or

completely regular.

Let us define α(n) as (1.1) and say X(t) satisfies the strong mixing condition if α(n) → 0 as n→∞.

It can be shown that α(n) ≤ 4 ‖∆n‖1 and hence the condition that ‖∆n‖1 → 0 as n → ∞ is stronger

than strong mixing. Some results for absolutely regular process do not hold just under strong mixing (See,

for example, Berbee [1979] or Bradley [1983]). Volkonskii and Rozanov [9, p.187] have pointed out that the

condition of absolute regularity is also more suitable for research. It is thus of interest to determine whether

a process is absolutely regular.

Assume that there exists a sequence of independent random vectors e(t), and matrices A(j) such that

X(t) =
∞∑

j=0

A(j)e(t− j), A(0) = I, (2.7)

where I is the identity matrix. We further assume that the e(t) admit a density, say gt. Pham and Tran

[1985] studies the convergence of ‖∆n‖1 to zero for linear processes and prove the following theorem.
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Theorem: Suppose that the following conditions hold:

(a)
∫
|gt(v − u)− gt(v)|dv < K1 ‖u‖ for all t;

(b)
∑∞

j=0 ‖A(j)‖ <∞ and
∑∞

j=0A(j)zj 6= 0 for all z with |z| ≤ 1.

(c)E ‖e(t)‖δ
< K2, for some δ > 0 and for all t;

If
∞∑

j=1

α(j)
δ

1+δ <∞ where α(j) =
∑
k≥j

‖Ak‖ ,

Then

‖∆n‖1 ≤ K3

∞∑
j=n

α(j)
δ

1+δ and Xt is absolutely regular.

where K1,K2,K3 are constants whose values are unimportant.

To prove the theorem they first prove the following two lemmas.

lemma 1: Let r(n) =
∑∞

j=nA(j)e(n− j) and ξ(n) = X(n)− r(n). Then (ξ(n), · · · , ξ(n+m))′ admits a

density, say, fn,m and

∆n(X) ≤ sup
m≥0

{E[δn,m(Rn,m)|X] + E[δn,m(Rn,m)]} a.s.

where Rn,m = (r(n), · · · , r(n+m)), X = (· · · , X(−1), X(0)) and δn,m(u) =
∫
|fn,m(z − u)− fn,m(z)|dz.

lemma 2: Suppose that

(a)
∫
|gt(v − u)− gt(v)|dv < K ‖u‖ for all t;

(b)
∑∞

j=0 ‖A(j)‖ <∞ and
∑∞

j=0A(j)zj 6= 0 for all z with |z| ≤ 1.Then

sup
m≥0

δn,m(Rn,m) ≤ K

∞∑
j=0

α(j + n) ‖e(−j)‖

where α(j) =
∑

k≥j ‖Ak‖ and K is a constant.

Proof of the Theorem: Let {cj} be a sequence of positive numbers. Since ∆n ≤ 2 a.s.,we have from

lemma 1 and 2, ‖∆n‖1 ≤ K
∑∞

j=n α(j)cj+2
∑∞

j=n P {‖e(j)‖ > cj}. By Schwartz inequality, P {‖e(j)‖ > cj} ≤

K/cδj . The theorem then follows by putting cj = α(j)−1/1+δ.
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2.2 Strong Mixing Properties of Markov chains and ARMA Processes

2.2.1 Results for The Univariate ARMA Processes

In applications of time series like econometrics there is an increasing interest in establishing the asymptotic

normality of various estimators of the model parameters assuming the strong mixing property for the basic

model. It is, therefore, of interest to see for what classes of time series strong mixing holds, and in particular

to see if it is true for stationary ARMA processes.

Athreya and Pantula [1986a] and Athreya and Pantula [1986b] discuss the mixing properties of autore-

gressive processes. They first establish the strong mixing property for a wide class of Harris-recurrent markov

chains. Using this result, they derive a set of sufficient conditions to guarantee the strong mixing property

for autoregressive processes.

There was a number of results in the literature related to the strong mixing of Markov chains. Strong

mixing was introduced by Rosenblatt in 1956. Rosenblatt [1971] gives necessary and sufficient conditions for

a process to be strong mixing. He established that a stationary markov process is strong mixing if and only

if it is uniformly pure non-deterministic. He also gives equivalent conditions for strong mixing in terms of

the transition operator and the invariant probability measure. Ibragimov and Linnik [1971] established that

a stationary gaussian sequence is strong mixing if it has a continuous spectral density that is bounded away

from 0.

Chanda [1974] and Withers [1981] have considered strong mixing properties of the process Yn =∑∞
j=0 wjen−j . They assume that {en} are i.i.d. random variables with an integrable characteristic function

and with a density function that is Lipschitz in L1. The condition on the smoothness is used to obtain a

bound on α(m). But Athreya and Pantula consider processes of the form Yn =
∑n−1

j=0 wjen−j + Zn where

{wj} decay exponentially and Zn converges to 0 in probability. Athreya and Pantula [1986b] derive the

strong mixing of such processes and their results are not derivable from that of Withers [1981].

Let (A,A) be a measurable space and P (·, ·) : A × A → [0, 1] be a transition function, i.e., P (x, ·) is a

probability measure on A for each fixed x in A, and P (·, E) is a measurable function on A for each fixed E

in A. Let {Yn : n ≥ 0} be a Markov chain with (A,A) as its state space and P (·, ·) as its transition function.

Thus

P [Yn+1 ∈ · |Fn] = P (Yn, ·) a.s.

where Fn = Fn
0

We say that a Markov chain Yn is Harris− recurrent if there exists a non-trivial σ-finite measure ψ(·)

on (A,A) such that,
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ψ(E) > 0 ⇒ Px[Yn ∈ E, for some n ≥ 1] = 1,

for all x in A where Px refers to the probability measure corresonding to the initial condition Y0 = x.

A σ-finite measure π(·) on (A,A) is called an invariant measure for the chain {Yn} if

π(·) =
∫

A

P (x, ·)π(dx)

An invariant probability measure π(·) is also called a stationary probability distribution forYn.

Athreya and Pantula [1986b] prove the following theorem:

Theorem: Let Yt be an autoregressive process given by Yt = ρYt−1 + et, t = 1, 2, · · · , where |ρ| ≤ 1 and

|et| are i.i.d. random variables independent of Y0.Assume that

(a) E[{log|e1|}+] is finite, and

(b) e1 has a non-trivial absolutely continuos component.

Then, for any initial distribution Λ of Y0, {Yn} is strong mixing.

To prove the theorem they first prove the following three lemmas.

lemma 1: Let {Yt} be a Harris-recurrent Markov chain on a state space (A,A) and with transition

function P (·, ·). Suppose π(·) is stationary probability distribution for {Yt}. The {Yt} is strong mixing.

(Proved in Athreya and Pantula [1986a])

lemma 2: Let {Yt} be and AR(1) process given by Yt = ρYt−1 + et, t = 1, 2, · · · ,. Assume that,

E[{log|e1|}+] is finite. Then, for any initial distribution of Y0, Yn converges in distribution to U =
∑∞

j=1 ρ
jej .

Also, π(·) = P [U ∈ ·], is a stationary probability measure for the Markov chain {Yt} and it is absolutely

continuous. (Proved in Athreya and Pantula [1986a] and Lai and Wei [1982])

lemma 3: Under the hypothesis of the theorem, there exist an integer k, a finite interval I = (a, b), a

number δ > 0 and a multiple m of k such that,

(a) for all x in (a, b) and E ⊂ (a, b), Px[Ynk ∈ E] ≥ [δλ(E)]n and

(b) for any y0, Py0 [Yjm ∈ I for some j ≥ 1] = 1 where λ(·) is the Lebesgue measure. (Proved in Athreya

and Pantula [1986b])

Proof of the Theorem: By lemma 3, Xt = Ytm is Harris recurrent. Also, from lemma 2, we know

that Xt has an invariant probability distribution π(·). Therefore, from lemma 1, it follows that Xt is strong
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mixing. Finally,since {Yt} is a markov chain, Yt is also strong mixing.

They also generalize the result for the p-th order autoregressive process {Yt} given by Yt = α1Yt−1 +

· · ·+ αpYt−p + et.The generalized result is as follows:

Theorem( Generalized Version ): {Yt} is strong mixing provided

(a) E[{log|e1|}+] is finite,

(b) the distribution of e1 has a non-trivial absolutely continuos component,

(c) Y0 = (Y0, Y−1, · · ·Y1−p) is independent of {ej},

(d) {ej} are i.i.d. random variables, and

(e) the roots of the characteristic equation zp − α1zp−1 − · · · − αp = 0, are less than one in modulus.

Again, White and Domowitz [1984] has shown that a finite order moving average of a strong mixing

process is itself a strong mixing. The two results together imply that finite order ARMA processes satisfying

the above (a)-(e) are strong mixing.

2.2.2 Results for The Multivariate ARMA Processes

Let us define the p-variate random process as before and ∆n as (2.6). Now let us assume that X(t) is

an autoregressive moving average (ARMA) process with values in <p. Pham and Tran [1985] studies the

convergence of ‖∆n‖s for ARMA processes.

Now X(t) admits a Markovian representation

X(t) = HZ(t), Z(t) = FZ(t− 1) +Ge(t), (2.8)

where Z(t) are random vectors,H,F,G are appropriate matrices and e(t) are i.i.d. random vectors.

Assume that the e(t) have a density g. Here A(j) = HF jG and hence r(n) and ξ(n) of lemma 1 of section

2.1.2 equals HFnZ(0); and
∑n

j=1 F
n−jGe(j) = Hξ(n), say. Now for u = (un+1, · · · , un+m),

δn,m(u) = sup
|h|≤1

E[h(ξn,m − u)− h(ξn,m)]

where ξn,m = (ξ(n), · · · , ξ(n+m)). Take uj = HF jz, then

ξ(j)− uj = HF j−n[ξ(n)− Fnz] +
j∑

i=n

HF i−ne(i) for j ≥ n,

Thus,

h(ξn,m − u) = h̃[ξ(n)− Fnz, e(n+ 1), · · · , e(n+m)],
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h(ξn,m) = h̃[ξ(n)− Fnz, e(n+ 1), · · · , e(n+m)] for some function h̃.

Hence,

δn,m(u) ≤ sup
|h̃|≤1

E
{
h̃[ξ(n)− Fnz, e(n+ 1), · · · , e(n+m)]− h̃[ξ(n), e(n+ 1), · · · , e(n+m)]

}
.

Since the e(t), t > n are independent of ξ(n), if ξ(n) admits a density φn, then

δn,m(u) ≤
∫
|φn(z − Fnu)− φn(z)|dz.

Thus, lemma 1 in section 2.1.2 becomes

lemma 1: Let X(t) be the ARMA process as in (2.8). Suppose that ξ(n) =
∑n

j=1 F
n−jGe(j) admits a

density φn. Then

∆n ≤ E {δn[FnZ(0)]|X}+ Eδn[FnZ(0)],

where δn(z) =
∫
|φn(v − z)− φn(v)|dv and X is as in lemma 1 in section 2.1.2.

lemma 2: Let g be an integrable and f be a bounded function on <d. Assume that for some γ > 0,

∫
‖x‖γ |g(x)|dx <∞ and f(x) = O(‖x‖γ), x→ 0.

Then, as the d× d matrix u tends to the zero matrix,

∫
f(ux)g(x)dx = O(‖u‖γ),

where ‖u‖ = sup‖x‖≤1 ‖ux‖.

With the help of these two lemmas Pham and Tran [1985] prove the following theorem regarding the rate

of convergence of ‖∆n‖s for ARMA process. The theorem is as follows.

Theorem: Suppose that the eigenvalues of F are of modulus stricly less than 1, then ‖∆n‖s → 0 as

n→∞ for all s. If moreover
∫
‖x‖δ

g(x)dx <∞
∫
|g(x)− g(x− θ)|dx = O(|θ|γ) for some δ > 0 and γ > 0,

then ‖∆n‖s → 0 at an exponential rate for all 0 < s <∞.
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2.2.3 Non-Strong Mixing Autoregressive Processes

Andrews [1984] shows that certain first-order autoregressive processes are not strong mixing. A direct

proof is given. The author first demonstrates that Markov processes do not necessarily satisfy Rosenblatt’s

strong mixing condition. In particular, he exhibits a class of first-order autoregressive processes given by

Xt =
∑∞

l=0 ρ
lεt−l, where {εt} is a doubly infinite sequence of independent Bernoulli random variables and

0 < ρ ≤ 1
2 . His proof is constructive in nature and sheds new light on the characteristics of strong mixing.

Before going into the statement of the results a brief description of the direct proof the certain AR(1)

processes are non-strong mixing may be helpful. Suppose 〈Xt〉 is an AR(1) process based on Bernoulli(q)

innovation random variables, and Xt,s is equal to Xt+s minus its component which depends on Xt, Xt−1, · · · .

If we know Xt is small, then we know that with probability 1 Xt+s must fall in a set which is a small

neighbourhood of the support of Xt,s. A sequence of such small neighbourhoods can be constructed for

s = 1, 2, · · · which have unconditional probability bounded away from 1. Hence, knowledge that Xt is small

increases the probability of certain sets which are determined by the ‘future’ of the process, no matter how

far in the future, by a non-negligible amount. This implies 〈Xt〉 is non-strong mixing.

First he proves two lemmas which are as follows:

lemma 1: If there exists a setA in F t
−∞ with P (A) > 0 and setsBs in F∞

t+s with P (Bs) ≤ k ∀s = 1, 2, · · · ,

for some constant k < 1, such that

P (Bs|A) = 1 ∀ s,

then 〈Xt〉 is not strong mixing.

To find sets A and Bs as in lemma 1 write Xt+s = Xt,s + ρsXt, where Xt,s =
∑s−1

l=0 ρ
lεt+s−l. Xt,s is

independent of Xt. Let Ws be the support of Xt,s, and wj , j = 1, · · · , J , be the elements of Ws, where

wj < wj+1, and J ≤ 2s. If Xt takes a value xt in (0, ρ), then Xt+s must fall in the set
⋃J

j=1(wj , wj + ρs+1),

since 0 < ρsxt < ρs+1. Define,

A = {Xt ∈ (0, ρ)} , and Bs =

Xt+s ∈
J⋃

j=1

(wj , wj + ρs+1)

 . (2.9)

Then P (A) > 0. This is actually the proof of the second lemma which is as follows:

lemma 2: Let A and Bs be defined as in (2.9).If A occurs, then Bs occurs, ∀ s. That is, P (Bs|A) = 1 ∀ s.

Further, P (A) > 0.
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To get the desired non-strong mixing result it remains to show P (Bs) ≤ k < 1, ∀s.The upper bound,

wj + ρs+1, of the intervals in Bs has been chosen sufficiently small so that the following result holds.

Theorem: For A ∈ F t
−∞ and Bs ∈ F∞

t+s,∀ s = 1, 2, · · · , as defined in (2.9),

|P (A ∩Bs)− P (A)P (Bs)| > P (A)[1− k] > 0 ∀s, (2.10)

where k ∈ (0, 1) is independent of s. That is, the sets A and Bs violate the strong mixing condition (1.1),

and the AR(1) process 〈Xt〉 based on Bernoulli(q) innovation random variables and AR parameter ρ ∈ (0, 1
2 ]

is not strong mixing.
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