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Abstract

The analysis of spatial data is based on a set of assumptions, which in practice need

to be checked. A commonly used assumption is that the spatial random field is second

order stationary. In this paper, a test for spatial stationarity for irregularly sampled

data is proposed. The test is based on a transformation of the data (a type of Fourier

transform), where the correlations between the transformed data is close to zero if the

random field is second order stationary. On the other hand, if the random field were

second order nonstationary, this property does not hold. Using this property a test for

second order stationarity is constructed. The test statistic is based on measuring the

degree of correlation in the transformed data. The asymptotic sampling properties of

the test statistic is derived under both stationarity and nonstationarity of the random

field. These results motivate a graphical tool which allows a visual representation of

the nonstationary features. The method is illustrated with simulations and a real data

example.

Key words and phrases: Fourier Transforms, Irregular sampling, Nonstationary,

Stationary random fields.

1 Introduction

An important problem in spatial statistics is to estimate the underlying covariance function

of the spatial random field (see, for example, Cressie [1993], Stein [1999] and Sherman [2011]).

A common assumption that is used is that the spatial random field {Z(s); s ∈ Rd} is second
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order stationary, in the sense that E[Z(s)] = µ and cov[Z(s1), Z(s2)] = c(s1 − s2) for all

s, s1, s2 ∈ Rd. An advantage of imposing second order stationarity is that it greatly simplifies

the statistical analysis. However, if this assumption does not hold, then either the covari-

ance function or the mean function is misspecified. This can, for example, lead to inaccurate

predictions. Furthermore, there exists applications where detecting the nonstationarity is of

primary interest. One interesting application is in petroleum engineering, where cost assess-

ments are made to determine whether oil should be extracted from a petroleum reservoir.

One important contributing factor to the decision process is the permeability of the rock. In

particular, Dromgoole and Speers [1997] show that heterogeneities (nonstationarity) in the

permeability makes recovery of oil substantially more expensive than when the permeability

is stationary (see Kim et al. [2005], for further details). Indeed, detection of nonstationarity

can determine whether the reservoir is drilled or not.

From the examples above, we see that it is important to test for second order stationarity

of a spatial random field. To address this issue, Fuentes [2005] extends the test for stationarity

of a time series, proposed in Priestley and Subba Rao [1969], to the spatial random field.

However, this test is based on testing for spatial random fields which are defined on the

regular grid Zd, and it is unclear how to extend the method to irregularly spaced data. In

a recent paper, Jun and Genton [2012] proposed a test for second order stationarity for

irregularly spaced spatial data. Their method is based on partitioning the spatial domain in

two non-intersecting domains, estimating the autocovariance function at various lags in both

domains and then comparing the two autocovariance functions. In common with many tests

for stationarity of a time series, the results of the Jun-Genton test depend on the partition

of the spatial domain that is used.

In this paper, we propose an alternative approach to test for stationarity based on a

characterization of second order stationarity. More precisely, suppose {Z(s); s ∈ Rd} is a

spatial random process, observed only at a finite number of locations, denoted as {sj}, in the

region [−λ/2, λ/2]d, and we observe {(sj, Z(sj)); j = 1, . . . , n}. We assume that the locations

are independent, uniformly distributed random variables. To motivate our approach we recall

that in the discrete time series setting if the time series is second order stationary, then

the discrete Fourier transforms (DFT) of the time series, defined as 1√
T

∑T
t=1Xt exp(itω)

(where {Xt} is the observed time series) are asymptotically uncorrelated at the fundamental

frequencies 2πk/T . Dwivedi and Subba Rao [2011] and Jentsch and Subba Rao [2015]

exploit this property to test for second order stationarity of a time series by testing for

uncorrelatedness of the DFTs using a Portmanteau type test statistic. It is clear that this

type of test can be adapted to the spatial setting on the grid Zd. Indeed, in an earlier

paper, Epharty et al. [2001] used a related idea to test for spatial stationarity using spatial

temporal-data defined in a grid. However, as far as we are aware, there does not exist an

analogous result for irregularly spaced data. In Section 2 we bridge this gap. To define the

Fourier transform we follow the approach of Matsuda and Yajima [2009] and Bandyopadhyay
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and Lahiri [2009], and replace t in the classical DFT with sj and T−1/2 with λd/2/n to give

Jn(ω) =
λd/2

n

n∑
j=1

Z(sj) exp(is′jω), ω ∈ Rd.

We show that if the spatial random field is second order stationary, then the sequence

{Jn(ωk)} is ‘near uncorrelated’ at the frequencies ωk = (2πk1
λ
, . . . , 2πkd

λ
)′, where k ∈ Zd. We

call Jn(ω), defined at these frequencies, the DFT. In contrast, we show that if the random

field is covariance nonstationary, the ‘near uncorrelatedness’ property between the DFTs does

not hold. We exploit these differing properties to define a test for second order stationarity.

In Section 3 we define the weighted DFT covariance function which measures the second

order dependence between the DFTs. We derive the asymptotic sampling properties of

the weighted DFT under the null hypothesis of stationarity and we use this to define the

test statistic. In Section 4 the asymptotic sampling properties of the test statistic, under

the alternative of nonstationarity is considered. In order to study the power of the test

statistic under the alternative of covariance nonstationarity, we define a form of rescaled

asymptotics for spatial random fields defined on Rd and use this construction to obtain an

asymptotic expression for the weighted DFT covariance. We use these results to determine

which tuning parameters may give power to the test. In Section 6 we discuss the selection

of tuning parameters. In Section 7.1 we present an extensive simulation study. Finally, in

Section 7.2 we apply the proposed test to test for spatial stationarity of ground ozone from

April 1st - September 30th, 2014 in the Ohio Central Valley and South East of the USA.

The R software for implementing the test can be found on the authors’ website. Some

additional materials and all of the proofs can be found in the supplementary material.

2 Motivation

In this section we define the frequencies where the Fourier transforms are near uncorrelated

under covariance stationarity. In the discrete time series setting if the time series is station-

ary, near uncorrelatedness occurs at the Fourier frequencies ωk = 2πk
T

(where T denotes the

length of the time series). In the theorem below, we show that if the spatial random field

is irregularly sampled, the frequencies where ‘near uncorrelation’ occurs depends on the size

of the spatial domain.

Theorem 2.1 Let us suppose that {sj : j = 1, · · · , n} are independent, uniformly distributed

random variables. In addition, define the fundamental frequencies ωk = (2πk1
λ
, . . . , 2πkd

λ
)′.

We define the function β2+δ(·), for some δ > 0, such that β2+δ(s) ≤ C for |s| ∈ [−1, 1], and

|β2+δ(s)| ≤ C|s|−(2+δ) for |s| > 1, and constant C > 0. Define Jµn (ω) in the same way as

Jn(ω), but with Z(s)− µ replacing Z(s).
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(i) Suppose that {Z(s); s ∈ Rd} is second order stationary with E[Z(s)|s] = µ and

cov[Z(s1), Z(s2)|s1, s2] = c(s1 − s2) for all s, s1, s2 ∈ Rd. We assume that |c(s)| ≤∏d
j=1 β2+δ(sj) for all s ∈ Rd. Further suppose that the spectral density of the process

Z(·) is given by f(ω) =
∫
Rd c(s) exp(is′ω)dω. Then

(a) For k 6= 0, we have E[Jn(ωk)] = 0.

(b) If k1 = k2 = 0, then var
[
Jn(ω0)

]
= var

[
Jµn (ω0)

]
and E

[
Jn(ω0)

2
]

= var
[
Jµn (ω0)

]
+

λdµ2.

(c) If k1 6= 0 or k2 6= 0, then cov[Jn(ωk1), Jn(ωk2)] = E[Jn(ωk1)Jn(ωk2)]. In ad-

dition, if k1 6= k2, then cov
[
Jn(ωk1), Jn(ωk2)

]
= cov

[
Jµn (ωk1), J

µ
n (ωk2)

]
or if

k1 = k2, then var
[
Jn(ωk)

]
= var

[
Jµn (ωk)

]
+ µ2λd

n
.

Using the above we have

cov
[
Jn(ωk1), Jn(ωk2)

]
=

{
f(ωk) +O( 1

λ
+ λd

n
) k1 = k2(= k),

O( 1
λd−b ) b elements of the vectors k1 − k2 are zero.

(ii) Suppose that {Z(s); s ∈ Rd} is second order nonstationary with a constant mean and

cov [Z(s1), Z(s2)|s1, s2] = c(s1, s2) = κs2(s1−s2). Let f(ω; s) =
∫
Rd κs(u) exp(iu′ω)du.

We assume that sups |κs(u)| ≤
∏d

j=1 β2+δ(uj). Then we have

cov
[
Jn(ωk1), Jn(ωk2)

]
=

1

λd

∫
[−λ/2,λ/2]d

f(ωk1 ; s) exp

(
i
2π

λ
s′(k1 − k2)

)
ds

+
1

n

∫
[−λ/2,λ/2]d

κs(0) exp

(
i
2π

λ
s′(k1 − k2)

)
ds +O(

1

λ
).

The theorem above raises some issues, that we now discuss.

Stationary vs. nonstationary

We see that depending on whether the spatial random field is second order stationary or

not, the covariance between the Fourier transforms could behave in very different ways.

In particular, if the spatial random field is second order stationary, the Fourier transform

Jn(ω) at the frequencies ωk = 2πk/λ are near uncorrelated. The situation is different in

the nonstationary set-up. To understand why, we observe that cov
[
Jn(ωk1), Jn(ωk2)

]
≈

h(ωk1 ,k1 − k2) where

h(ω; r) =
1

λd

∫
[−λ/2,λ/2]d

f(ω; s) exp(i
2π

λ
s′r)ds.
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Using basic results in Fourier analysis, it is clear that h(ω; r) = 0, for all r 6= 0 and all

ω if and only if f(ω; s) = f(ω), in other words the spatial process is spatially second

order stationary. Furthermore, since f(ω; ·) ∈ L2[−λ/2, λ/2]d, the magnitude of the Fourier

transform 1
λd

∫
[−λ/2,λ/2]d f(ωk1 ; s) exp[i2π

λ
s′(k1−k2)]ds will decrease to zero as ‖k1−k2‖1 →

∞ (where ‖ · ‖1 denotes the `1 norm of a vector). In other words, the correlations between

the DFTs decrease the further apart the frequencies.

Asymptotic set-up

From the above theorem we observe that in the stationary case the DFTs become more

uncorrelated as λ → ∞ (as the spatial domain grows). In addition, we observe that the

variance of the DFT converges to the spectral density as λ→∞ and λd/n→ 0 (i.e., as the

spatial domain grows the number of observations should become denser on the spatial do-

main). This is the mixed (a combination of increasing domain and infill) spatial asymptotics

set-up described in Hall and Patil [1994], Lahiri [2003], Matsuda and Yajima [2009], Bandy-

opadhyay and Lahiri [2009], and Bandyopadhyay et al. [2015]. In this paper, the results will

be derived under this asymptotic set-up.

3 The test statistic

In this section we will develop the test statistic that will allow us to test the hypothesis H0 :

The spatial random field is second order stationary, against the alternative HA : The spatial

random field is second order nonstationary.

Summarizing Theorem 2.1, we observe that under second order stationarity, the Fourier

transforms {Jn(ωk)}k are close to uncorrelated. Therefore, in some respects {Jn(ωk)}k can

be considered as a near uncorrelated frequency series. To measure the degree of correlation

between the DFTs at lag r we define the weighted DFT covariance as

Âλ(g; r) =
1

λd

a∑
k1,...,kd=−a

g(ωk)Jn(ωk)Jn(ωk+r)

−
[

1

n

a∑
k1,··· ,kd=−a

g(ωk)× 1

n

n∑
j=1

Z(sj)
2 exp(−is′jωr)

]
, (1)

where the limits of the sum a satisfy a/λ → ∞ as λ → ∞ (typically we let ad = O(n)),

k = (k1, . . . , kd)
′ and g is a given Lipschitz continuous function with supω∈Rd |g(ω)| <∞. In

the definition of (1) we removed the nugget term to reduce the influence of the variance (which

may be problematic in the case that the observations have been corrupted by independent,

but possibly heterogeneous noise). We note that Masry [1978] and Matsuda and Yajima

[2009] removed a similar term in their definition of the spectral density estimator. Examples
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of weight functions are discussed in Sections 4 and 6. In what follows we assume that the

random field has a zero mean. However, the analysis below also holds for spatial random

fields which have been de-trended with a parametric mean.

The asymptotic sampling properties of Âλ(g; r) are derived using the following assump-

tions.

Assumption 3.1 (i) {Z(s); s ∈ Rd} is a second order stationary random field.

(ii) {Z(s); s ∈ Rd} is a Gaussian random field.

(iii) f(·) satisfies
∫
Rd f(ω)dω <∞ and

∫
Rd f

2(ω)dω <∞.

(iv) For some δ > 0, define the monotonic function β1+δ : R→ R where for some constant

C, β1+δ(s) = C if s ∈ [−1, 1] and |β1+δ(s)| ≤ C|s|−(1+δ) if |s| > 1. Let β1+δ(ω) =∏d
j=1 β1+δ(ωj). Then

(a) f(ω) ≤ β1+δ(ω).

(b) For all 1 ≤ j ≤ d, the partial derivatives satisfy |∂f(ω)
∂ωj
| ≤ β1+δ(ω).

(c) | ∂
df(ω)

∂ω1...∂ωd
| ≤ β1+δ(ω).

Remark 3.1 Assumptions 3.1(iii,iv) appear quite technical, but it is satisfied by a wide range

of spatial covariance functions. For example, we now show that the exponential covariance

(which belongs to the Matérn class), defined by c(‖s‖2) = φ exp(−‖s‖2) (where ‖ · ‖2 denotes

the Euclidean distance) satisfies these assumptions. To see why, we consider the case d = 1

and d = 2. For d = 1, the spectral density function of the exponential covariance is

f(ω) =
φ

1 + ω2
,

whereas for d = 2, the exponential covariance has the spectral density

f(ω1, ω2) =
2πφ

(1 + ω2
1 + ω2

2)3/2
.

It is straightforward to show that these spectral density functions satisfy Assumptions 3.1(iii,iv).

Using the above set of assumptions we obtain the following two theorems.

Theorem 3.1 Suppose that Assumption 3.1(i,iii,iv(a,b,c)) holds. Then for r ∈ Zd/{0},
where {m1, . . . ,md−b} is the subset of non-zero values in r = (r1, . . . , rd)

′, we have

E
[
Âλ(g; r)

]
=

{
O
(

1
λd−b

∏d−b
j=1 (log λ+ log |mj|)

)
, r ∈ Zd/{0}

1
(2π)d

∫
ω∈Rd f(ω)g(ω)dω +O

(
log λ+log ‖r‖1

λ
+ 1

n

)
, r = 0.

(2)
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where a/λ→∞ as a→∞ and λ→∞.

Theorem 3.1 shows that if the process is second order stationary, then Âλ(g; r) is an

asymptotically unbiased estimator of zero.

In the following theorem we obtain an expression for the asymptotic variance of Âλ(g; r),

which together with Theorem 3.1, show that under stationarity, Âλ(g; r) converges in prob-

ability to zero.

Theorem 3.2 Suppose Assumption 3.1(i,iii,iv(a,b)) holds and r1, r2 ∈ Zd/{0}. Then we

have

λdcov
[
<Âλ(g; r1),<Âλ(g; r2)

]
=


cλ,1 +O

(
`λ,a,n + ‖r‖1

λ

)
r1 = r2(= r)

<cλ,2 +O
(
`λ,a,n + ‖r‖1

λ

)
r1 = −r2(= r),

O(`λ,a,n) otherwise

λdcov
[
=Âλ(g; r1),=Âλ(g; r2)

]
=


cλ,1 +O

(
`λ,a,n + ‖r‖1

λ

)
r1 = r2(= r)

−<cλ,2(r) +O
(
`λ,a,n + ‖r‖1

λ

)
r1 = −r2(= r),

O(`λ,a,n) otherwise

λdcov
[
<Âλ(g; r1),=Âλ(g; r2)

]
=

{
=cλ,2 +O

(
`λ,a,n + ‖r‖1

λ

)
r1 = −r2(= r)

O(`λ,a,n) r1 6= −r2
,

where

cλ,j =
1

2(2π)d

∫
2π[−a/λ,a/λ]d

f 2(ω)hj(ω)dω and hj(ω) =

{
|g(ω)|2 + g(ω)g(−ω) j = 1

g(ω)g(−ω) + g(ω)2 j = 2
, (3)

with

`λ,a,n = log2 a

(
log a+ log λ

λ

)
+
λd

n
.

and a the number of frequencies used to define Âλ(·).

We observe the above result is robust to the choice of a, in the sense that if a = O(λk) (for

any 1 ≤ k <∞), then the results still holds.

We now show the asymptotic normality of Âλ(g; r).

Theorem 3.3 Suppose Assumption 3.1(i,ii,iii,iv(a,b)) holds. In addition, suppose that m

is finite, rj ∈ Zd/{0} are fixed and are such that ri 6= rj or −rj for all 1 ≤ i, j ≤ m. Then
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we have

c
−1/2
λ,1 λd/2

(
<Âλ(g; r1),=Âλ(g; r1), . . . ,<Âλ(g; rm),=Âλ(g; rm)

)′ D→ N (0, I2m)

with `λ,a,n → 0, λd/[n log2d a]→ 0 as λ, a, n→∞. I2m denotes the 2m-dimensional identity

matrix.

Theorem 3.3 allows us to check for correlations between the DFTs. We start by selecting

a finite set S ∈ Zd/{0}, which surrounds the origin (see Figure 2a, for an example). To

measure the correlations between the DFTs we define the test statistic

TS =
λd maxr∈S |Âλ(g; r)|2

cλ,1
.

Using Theorem 3.3, asymptotically, under the null, the distribution of TS converges to F (x) =

[1− exp(−x/2)]|S|, where |S| denotes the cardinality of the set S. However, cλ,1 is unknown,

therefore we need to define an estimator of it. Using Theorem 3.2 we see that when r is

is in a neighbourhood of zero, the coefficients {Âλ(g; r)} are almost uncorrelated and with

similar variance. Therefore we define a set S ′ ∈ Zd/{0} which is close to zero and such that

S ∩ S ′ = ∅ (see Figure 2a, for an example). We estimate cλ,1 with

ĉλ(S ′) =
λd

(2|S ′| − 1)

∑
r∈S′

(
[<Âλ(g; r)− Ā]2 + [=Âλ(g; r)− Ā]2

)
, (4)

where Ā = 1
2|S′|

∑
r∈S′ [<Âλ(g; r) + =Âλ(g; r)]. Replacing cλ,1 in TS with ĉλ(S ′) and using

Theorem 3.3 gives

TS,S′ =
λd maxr∈S |Âλ(g; r)|2

ĉλ(S ′)
D→

max1≤i≤|S|(Z
2
2i−1 + Z2

2i)
1

2|S′|−1
∑2(|S|+|S′|)

j=2|S|+1 (Zj − Z̄)2
, (5)

where {Zj; 1 ≤ j ≤ 2(|S| + |S ′|)} are iid Gaussian random variables and Âλ
D→ B means

that asymptotically the distribution of Âλ converges to the distribution of B.

In the following lemma we show that for a set S ′ that grows at a sufficient rate, ĉλ(S ′)
P→

cλ,1. One implication of this is that when S ′ is sufficiently large, the distributions of TS,S′
and TS are asymptotically equivalent.

Lemma 3.1 Suppose the set S ′ ∈ Zd/{0} is such that if r ∈ S ′ then −r /∈ S ′ and the vector

r contains at most bd/2c-zeros (S0 ⊂ S ′ consisting of vectors which contain zeros). Then
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we have

E [ĉλ(S ′)− cλ,1]2 = O

[ 1

|S ′|
∑
r∈S′

‖r‖1
λ

]2
+
|S0|
|S ′|

+
1

λd

2

+
1

|S ′|
+ `λ,a,n

 .

Using the above lemma we can determine how the set S ′ should grow such that ĉλ(S ′) is

mean squared consistent as λ → ∞. Define the semi-norm ‖r‖max = max(|ri|; 1 ≤ i ≤ d)

and let |S ′|max = maxr∈S′(‖r‖max). Using these definitions we construct a set S ′ such that

|S ′|max = λ1−η , where 0 < η < 1 and suppose S ′ expands at the rate |S ′| = O(λd(1−η)). Then

by using the above lemma we see that

E [ĉλ(S ′)− cλ,1]2 = O

(
1

λ2η
+

1

λd(1−η)
+ `λ,a,n

)
,

which leads to a mean squared consistent estimator of cλ,1.

Remark 3.2 An important assumption that we have made is that the spatial locations are

uniformly distributed. This assumption is relatively standard for nonparametric methods in

spatial statistics. For example, Guan et al. [2004], Li et al. [2008] and Jun and Genton [2012]

develop tests for spatial data and model the irregularly spaced locations using a homogeneous

Poisson point process (which is equivalent to uniform sampling).

Non-uniform locations can induce correlations between the DFTs (see, Bandyopadhyay

and Lahiri [2009] and Subba Rao [2014]), which may lead us to false rejections of the null.

In the case the spatial locations are highly non-uniform it is possible to induce the ‘near

uncorrelated’ property (for spatially stationary random fields) by dividing the spatial obser-

vations by the density of locations and use X(s) = Z(s)/h(s) (where h(s) is the density of

locations) as the ‘observations’. Of course, in practice the density h(·) is unlikely to be known

and will have to be estimated from the data. The simulations in Section 7.1 suggest that our

method is relatively robust to deviations from uniformity, therefore we have not pursued the

above method in this paper. Nonetheless, we suggest checking the influence of locations on

the outcome of the test by using the method outlined at the end of Section 7.2.

In order to simplify notations we have assumed the observations are uniformly distributed

on a d-dimensional cube. The same results apply for d-dimensional hyper-rectangles of the

type
∏d

j=1[−λj/2, λj/2], with the obvious adjustment of the fundamental frequencies to ωk =

(2πk1
λ1
, . . . , 2πkd

λd
)′ (see Section 7.2).

Remark 3.3 In the case that the locations {sj; j = 1, . . . , n} are not that dense on [−λ/2, λ/2]d,

TS,S′ is not particularly sensitive to changes in the covariance. In such cases the method can

be modified to simply detect changes in the spatial variance. We do this by using Theorem
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2.1 and adapting the DFT Jn(ωk) to detect changes in the spatial variation. Specifically, let

vλ(r) =
1

n

n∑
j=1

|Z(sj)| exp(−is′jωr).

The results in Theorem 2.1 can be used to obtain the sampling properties of vλ(r) under the

null and alternative hypotheses. Details can be found in the supplementary material.

The test for non-Gaussian stationary random fields

We now show that similar results hold in the case that the spatial random field is stationary

but not necessarily Gaussian. The main difference is that the asymptotic variance of Âλ(g; r)

contains an additional term. Here we give a summary of the result, which requires additional

assumptions and definitions. Suppose Assumption 3.1(i,iii,iv) are satisfied. By relaxing the

Gaussianity assumption, additional terms are involved and we define the tri-spectral density

as

f4(ω1,ω2,ω3) =

∫
R3d

κ4(s1, s2, s3) exp(−i
3∑
j=1

s′jωj)ds1ds2ds3,

where κ4(s1, s2, s3) = cum[Z(0), Z(s1), Z(s2), Z(s3)]. We assume that the spatial tri-

spectral density function is such that |f4(ω1,ω2,ω3)| <
∏3d

j=1 β1+δ(ωj) and for 1 ≤ i ≤ 3d,

|∂f4(ω1,...,ω3d)
∂ωi

| ≤
∏3d

j=1 β1+δ(ωj).

Under these conditions, we use Subba Rao [2014], Theorem 3.6, to show an analogous

version of Theorem 3.2, that is

λdcov
[
<Âλ(g; r1),<Âλ(g; r2)

]
=


cλ,1 + dλ,1 +O(`

(2)
λ,a,n + ‖r‖1

λ
) r1 = r2(= r)

<[cλ,2 + dλ,2] +O(`
(2)
λ,a,n + ‖r‖1

λ
) r1 = −r2(= r),

O(`
(2)
λ,a,n) otherwise

where cλ,1 and cλ,2 are defined in Theorem 3.2,

dλ,j =
1

2(2π)2d

∫
2π[−a/λ,a/λ]2d

h2,j(ω1,ω2)f4(−ω1,−ω2,ω2)dω1dω2,

h2,j(ω1,ω2) =

{
g(ω1)g(ω2) j = 1

g(ω1)g(ω2) j = 2
and `

(2)
λ,a,n = `λ,a,n +

adλd

n2
+

log3 λ

λ
.

Analogous results hold for λdcov
[
=Âλ(g; r1),=Âλ(g; r2)

]
and λdcov

[
<Âλ(g; r1),=Âλ(g; r2)

]
.

This result places a minor additional constraint on the choice of a, that is (aλ)d/n2 → 0

10



as λ and n → ∞ (these conditions are satisfied by using a = O(min(n1/d, λk)), for some

1 ≤ k <∞).

In addition, with sufficient mixing conditions on the spatial random field Theorem 2.1

holds. The only difference is that cλ,1+dλ,1 replaces cλ,1. Furthermore, a version of Lemma 3.1

can also be shown. More precisely, for 3 ≤ m ≤ 8, we define the m-th order spatial spectral

density fm(ω1, . . . ,ωm−1), in the same way as the tri-spectral density f4. If the conditions

|fm(ω1,ω2, . . . ,ωm−1)| <
∏(m−1)d

j=1 β1+δ(ωj) and for 1 ≤ i ≤ (m − 1)d, |∂fm(ω1,...,ω(m−1)d)

∂ωi
| ≤∏(m−1)d

j=1 β1+δ(ωj) hold, then E[ĉλ(S ′) − (cλ,1 + dλ,2)]
2 → 0 with λd/n → 0 as λ → ∞ and

n → ∞. These results imply that even in the case the random field is non-Gaussian, the

test statistic TS,S′ (as defined in (5)) can be used to test for stationarity.

4 The behaviour of the test statistic under the alter-

native hypothesis

In this section we consider the behaviour of the test statistic when the spatial random process

is second order nonstationary. More precisely, {Z(s); s ∈ Rd} is a constant mean random

process whose covariance cov[Z(s1), Z(s2)|s1, s2] is not a function of the difference (s1−s2).

To fix notation we let κs2(s1 − s2) = cov[Z(s1), Z(s2)|s1, s2].
Our objective is to understand what Âλ(g; r) is estimating when the spatial covariance

is nonstationary. Unfortunately, in general if a process is nonstationary, it is usually not

possible to obtain asymptotically consistent estimators, since the global character of the

spatial random field changes as we increase the spatial domain, and a limit cannot be easily

defined. A possible solution to this problem can be found in the regular sampled time

series framework. In this setting, Dahlhaus [1997, 2012] addresses this issue by conducting

the asymptotics in so called ‘rescaled time’ not ‘real time’ and shows that by using rescaled

asymptotics, one can evaluate the asymptotic limit of an estimator constructed from a ‘locally

stationary’ time series. This allows us to understand the sampling properties of an estimator,

even though asymptotic consistency in real time cannot be achieved. Fuentes [2002, 2005]

uses a similar rescaling devise to study the nonstationary behaviour of estimators on the

spatial grid Zd. Motivated by these approaches we propose a form of rescaled asymptotics

for spatial processes defined on Rd, which we use to understand how Âλ(g; r) behaves under

the nonstationary set-up.

To motivate our approach, we return to the location dependent spectral density f(ω; s),

defined in Theorem 2.1. Taking the Fourier transform of f(ω; s) over location s, we observe

that f(ω; s) can be written as

f(ω; s) =
1

(2π)d

∑
j∈Zd

ζλ,j(ω) exp

(
i2π

s′j

λ

)
, (6)

11



where ζλ,j(ω) = 1
λd

∫
[−λ/2,λ/2]d f(ω; s) exp(−i2πs′j/λ)ds. Recall ζλ,j(ω) = 0 for all j 6= 0

and all ω ∈ Rd if and only if the process is second order stationary. Since ζλ,j(ω) depends on

λ, using mixed asymptotics (described in Section 2) ζλ,j(ω) cannot be consistently estimated.

Therefore, we place some structure on the coefficients ζλ,j(ω) as λ→∞.

For s ∈ [−1/2, 1/2]d define the function

f̃(ω; s) =
∞∑

j1,...,jd=−∞

ζj(ω) exp (i2πs′j) where ζr(ω) =

∫
[−1/2,1/2]d

f̃(ω; s) exp (−i2πs′r) ds (7)

and let

κ̃(u; s) =

∫
Rd

f̃(ω; s) exp(−i2πu′ω)dω.

Given the above definitions we define a sequence of nonstationary spatial processes {Zλ(s)}
(we use the term sequence loosely, since λ is defined on R+ not Z+), where for each λ > 0

and s ∈ [−λ/2, λ/2]d the covariance is

cov[Zλ(s), Zλ(s + u)] = κλ,s(u) = κ̃(u;
s

λ
),

and the location dependent spectral density is fλ(ω; s) = f̃(ω; s
λ
). Notice that the Fourier

coefficients {ζj(·); j ∈ Zd} remain the same for all λ, but the covariance changes with λ.

We will use this set-up to obtain the asymptotic limit of Âλ(g; r). Below we state the

assumptions that we require.

Assumption 4.1 Suppose {Zλ(s)} is a series of constant mean (E[Zλ(s)|s] = µ) Gaussian

random fields whose location dependent spectral density fλ(ω; s) satisfies (7). The coefficients

{ζj(·)} defined in (7) satisfy

(i) supω∈Rd |ζj(ω)| ≤ `(j) and
∫
Rd |ζj(ω)|dω ≤ `(j),

(ii) For 1 ≤ i ≤ d, we have supω∈Rd |∂ζj(ω)

∂ωi
| ≤ `(j) and

∫
Rd |∂ζj(ω)

∂ωi
|dω ≤ `(j),

where `(j) =
∏d

i=1 `(ji) with `(j) = C|j|−1 if j 6= 0 and `(0) = C (|C| <∞).

We now study the sampling properties of Âλ(g; r) under this asymptotic set-up.

Theorem 4.1 Let us suppose that Assumptions 4.1 is satisfied, and let Âλ(g; r) be defined

as in (1) respectively. Then we have

E[Âλ(g; r)] = A(g; r) +O

(
log2(λ+ ‖r‖1)

λ

)
, (8)
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and

λdcov
[
Âλ(g; r1), Âλ(g; r2)

]
= O

(
`5(r1 − r2) +

λd

n

)
, (9)

as `λ,a,n → 0, where `5(r) =
∏d

i=1 `5(ri), with `5(r) = C if |r| ≤ e and `5(r) = C log5(|r|)/r
if |r| > e, and

A(g; r) =
1

(2π)d

∫
[−a/λ,a/λ]d

ζr(ω)g(ω)dω. (10)

We use Theorem 4.1 to assess the power of the test. We rewrite TS,S′ as

TS,S′ =
λd

ĉλ(S ′)
max
r∈S

[ ∣∣∣Âλ(g; r)− A(g; r)
∣∣∣2 + |A(g; r)|2

+2<[Âλ(g; r)− A(g; r)]<A(g; r) + 2=[Âλ(g; r)− A(g; r)]=A(g; r)

]
. (11)

We see that TS,S′ depends on two components: (a) Âλ(g; r) and (b) the variance estimator

ĉλ(S ′). Theorem 4.1 explains how Âλ(g; r) behaves under the alternative, and we now use

this result to understand the limit of ĉλ(S ′) under the alternative. Let ‖r‖min = min(|ri|; 1 ≤
i ≤ d) and |S ′|min = minr∈S′(‖r‖min).

Lemma 4.1 Suppose Assumption 4.1 holds. Then we have

E[ĉλ(S ′)] = O

1 +

λd log2 |S ′|max

|S ′||S ′|min︸ ︷︷ ︸
leading term

+
λd

|S ′|2

(
log |S ′|max log

|S ′|max

|S ′|min

)2d

︸ ︷︷ ︸
smaller term




and

var [ĉλ(S ′)] = O

(
1

|S ′|
+
λd

n
+

log6d(a)

λ
+
C log4d(a)

|S ′|

[
log |S ′|max

(
log
|S ′|max

|S ′|min

)]d)
,

where a denotes the number of frequencies used in the definition of Âλ(·). We recall a is a

user chosen parameter and if a = O(λk) (where 1 ≤ k <∞), then it has very little influence

on the asymptotic rate.

Lemma 4.1 may appear a little unwieldy. However to give an idea of where it comes from, con-

sider the simple example Y (sj) = hλ(sj) + ε(sj), where {ε(s)} is a stationary spatial process

defined on R, {sj}nj=1 are iid uniformly distributed random variables defined on [−λ/2, λ/2]

and hλ : [−λ/2, λ/2] → R which is square summable has the representation hλ(s) =
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∑
j∈Z γj exp(2πijs/λ). Define the Fourier transform Jλ(ωj) = n−1

∑n
j=1 Y (sj) exp(itωj). It

can easily be shown that Jλ(ωj) is a consistent estimator of γj and λ1/2Jλ(ωj) has variance

f(ωj) +O(λ/n) where f is the spectral density; see Theorem 2.1. Suppose we want to check

if the function hλ is constant (i.e., Y (s) is stationary), then one method is to test γj = 0

for |j| ≤ L, where L is not too large (since |γj| → ∞ as j →∞). However to construct the

test statistic, we also have to estimate the variance of {Jλ(ωj)}Lj=1. To do this, we recall

that for L << λ, {λ1/2Jλ(ωj)}Lj=1 have variances approximately equal to f(0). Therefore,

we estimate it with σ̂2 = λ
M

∑L+N+M
j=L+N |Jλ(ωj)|2. It can be shown that σ̂2 is a consistent

estimator of f(0) if (L+N +M) << λ but M →∞ as λ→∞. Using this, the test statistic

is T = λ
∑L

j=1 |Jλ(ωj)|2/σ̂2. In the case that hλ is not constant (i.e., Y (s) is a nonstationary

process), it can be shown that E[σ̂2] = O( λ
MN

) (this is analogous to the bound for E[ĉλ(S ′)]
given above). This means if N is kept fixed then σ̂2 would deflate the statistic T , resulting

in a loss of power. Therefore, to increase power N →∞ as λ→∞, but in such a way that

(N+M+L)/λ→ 0. Using similar arguments, below we assess the power of the test statistic

TS,S′ .
We use Lemma 4.1 to understand how TS,S′ will behave for different choices of S ′ under the

null and the alternative. In Section 3 we showed that for ĉλ(S ′) to be a consistent estimator

of cλ,1, S ′ should be such that |S ′|max = O(λ1−η) and |S ′| = O(λd(1−η)) for some 0 < η < 1.

In the discussion below we will assume that S ′ satisfies these specifications. Further, we will

assume that the set S is such that for at least one r ∈ S, A(g; r) 6= 0. From Lemma 4.1 we

observe that if we keep the lower part of the set S ′ fixed, i.e., |S ′|min = C, where C ≥ 0 is a

fixed constant (hence the smallest values in S remain fixed), then ĉλ(S ′) = Op(λ
dη log2(λ)).

This together with (11) implies that TS,S′ = Op(λ
d supr∈S |A(g; r)|2/λdη log2(λ)). On the

other hand, if we define S ′ in such a way that |S ′|min = O(λdη log2(λ)), then ĉλ(S ′) = Op(1)

and TS,S′ = O(λd supr∈S |A(g; r)|2). In other words, the power is greatest when we allow

the set S ′ to grow in such a way that its inner values are moving away from zero. This is

reasonable, since Âλ(g; r) are estimating the Fourier coefficients, A(g; r) and |A(g; r)| → 0

as ‖r‖1 → ∞. Hence, for maximum power we require that the set S to neighbour zero

so that A(g; r) is largest. Whereas, S ′ should be further from zero so the corresponding

Âλ(g; r) and ĉλ(S ′) are small. Of course, in order that ĉλ(S ′) is a consistent estimator of cλ,1
(under the null), S ′ should not be too far from zero. In Section 6, we give some guidelines

on selecting S and S ′.
To understand what the test statistic TS,S′ is able to detect, we use (7) to rewrite A(g; r)

(defined in (10)) as

A(g; r) =

∫
[−λ/2,λ/2]d

exp

(
−i2πs′r

λ

)
1

(2π)d

∫
[−a/λ,a/λ]d

fλ(ω; s)g(ω)dωds, (12)

which is the Fourier transform of (2π)−d
∫
[−a/λ,a/λ]d fλ(ω; s)g(ω)dω over s at frequency r.
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We use this transformation to suggest examples of weight functions.

Example 4.1 (Exponential weight functions) From the above arguments it can be shown

that by using the weight function g(ω) = exp(iv′ω) we have
∫
Rd fλ(ω; s) exp(iv′ω)dω =

κλ,s(v) = κ̃(v; s
λ
). Therefore under Assumption 4.1 we have

A(eiv·; r) =

∫
[−1/2,1/2]d

κ̃(v; s) exp(−ir′s)ds + op(1). (13)

Thus, Âλ(e
iv·; r) estimates A(eiv·; r), the Fourier transform of the location dependent spa-

tial covariance at covariance lag v. Eqn.(13) gives guidelines on how to select v for weight

functions which are the sum of exponentials, g(ω) = exp(iv′ω). Since κ̃(v; s) is the non-

stationary covariance function at covariance lag v and the magnitude of the covariance will

decrease as ‖v‖1 →∞, we need to select relatively small values of v in order to ensure that

Âλ(g; r) is large (suggestions are given in Sections 6 and 7.2).

Remark 4.1 (Spatially dependent mean) We now consider the case that the spatial

random field has not been detrended and E[Z(s)] = µ(s), where µ(·) is a function which

depends on location. We show that in the case that the mean spatial function varies over

space, then regardless of whether the covariance function is stationary or not, E[Âλ(g; r)]

will be ‘large’. To do this, define Âµλ(g; r) just as Âλ(g; r) but with Z(s)− µ replacing Z(s)

in the definition of the Jn(ω). It can be shown that

E
[
Âλ(g; r)

]
≈

a∑
k1,...,kd=−a

g(ωk)µF (k)µF (−k − r) + E
[
Âµλ(g; r)

]
,

where

µF (r) =
1

λd

∫
[−λ/2,λ/2]d

µ(s) exp(i2π
s′r

λ
)ds.

Therefore, we see that E
[
Âλ(g; r)

]
is unlikely to be zero as λ → ∞. Note, also, that the

performance of the test also depends on the magnitude of ĉλ(S ′).

5 Diagnostic plots

Besides motivating a formal test, Theorem 3.3 allows us to visualize the nonstationarities in

the random field. We observe that if the null is true then asymptotically the standardized
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coefficients,

tR(r) = λd/2
<Âλ(g; r)√

ĉλ(S ′)
and tI(r) = λd/2

=Âλ(g; r)√
ĉλ(S ′)

,

are uncorrelated and follow a t-distribution with (2|S ′| − 1) degrees of freedom. We use this

result to make a plot of tR(r) and tI(r) which will allow us to see which Âλ(g; r) coefficients

are significant and identify nonstationary features in the data. In Figure 1a we plot tR(r)

and tI(r) for r ∈ R = {r = (r1, r2)
′ : rj ∈ {0, 1, · · · , 5}, j = 1, 2; r 6= 0, r` + rk 6= 0,∀`, k}

from one realisation of a stationary random field, where n = 1000 and λ = 5 (a Gaussian

process with exponential covariance and range parameter ρ = 1). We observe that most

of the standardized real and imaginary coefficients are blue or green (meaning that their

t-transforms lie between -1.75 and 1.75, where 1.75 is the 95-th percentile of a t distribution

with df = 15) and are statistically insignificant.

In Figure 1b we plot a tR(r) and tI(r) for r ∈ R, from one realisation of a nonstationary

random field where n = 1000 and λ = 5 (a Gaussian process with covariance model NS2, as

defined in Section 7.1.3). In contrast to Figure 1a we observe that some of the standardized

coefficients lie outside the interval [−1.75, 1.75], some are even lying outside the interval

[−2.95, 2.95], where 2.95 is the 99.5-th percentile of a t distribution with df = 15, which

suggests nonstationarity in the random field.

To summarize, it is often difficult to visually discriminate between stationary and non-

stationary random fields. However, the plots of tR(r) and tI(r) do allow us to visually

discriminate between them. Moreover, Âλ(g; r) can convey information about the nonsta-

tionarity. Using Theorem 4.1, heuristically we see that

E

(∑
r∈Zd

Âλ(g; r)eis
′r

)
≈
∫
[−a/λ,a/λ]d

g(ω)fλ(ω; s)dω.

Using this result, certain configurations of significant Âλ(g; r) can suggest where the non-

stationarities lie. Examples include:

• Significant coefficients of Âλ(g; r) (r = (r1, r2)) which only lie on the r1 and r2 axis

suggest that the location dependent spectral density has an additive structure of the

form fλ(ω; s) = fλ,1(ω; sx) + fλ,2(ω; sy) (s = (sx, sy)
′).

• Significant coefficients which only lie on the r1 = r2 diagonal suggest the location

dependent spectral density has the form fλ(ω; s) = fλ(ω; sx + sy).

It is worth noting that in the case the null is rejected and a diagnostic plot is made it is

instructive to change the grid S ′ in the definition of ĉλ(S ′). Moving the grid S ′ further from

the origin will highlight statistically significant coefficients.
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(a) Stationary: tR(r) (left) and tI(r) (right).
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(b) Nonstationary: tR(r) (left) and tI(r) (right).

Figure 1: Representative plots of standardized coefficients for stationary and nonstationary
processes, where ĉλ(S ′) is calculated using the grid given in Section 6 (in total there are 16
real and imaginary terms in S ′). Scale is according to a t-distribution with df = 15.

6 Implementation Issues

In this section, we briefly discuss implementation of the test. The test depends on the

selection of the tuning parameters, S and S ′ in the definition of the test statistic TS,S′ and

the choice of weight function g(·) in the definition of Âλ(g; r). We now briefly discuss how

these user-chosen parameters can be selected. We recall that in the definition of Âλ(g; r) we

need to choose the size of the frequency grid, a, over which we test for correlation. In all

the simulations and data analysis we used a =
√
n/2 in the definition of Âλ(g; r). Further,

in all the simulations we removed the sample mean from the observations.

1. Selection of S and S ′: The analysis of the test under the alternative shows that

the test tends to have more power when r is small. Therefore it makes sense only to

choose r values which are close to the origin. For practical purpose one might only want to

consider the 4 or at the most 12 points nearest to the origin on the r grid to check for the

nonstationarity. In our simulation study we have considered the nearest 4 points to (0, 0),

i.e., S = {(−1, 1), (0, 1), (1, 1), (1, 0)}, noting that by Theorem 3.2 we cannot use both r

and −r. The set S is illustrated in Figure 2a, and this choice of S appears to work well in

detecting nonstationarity.

Simulations show that using the grid configuration S ′ given in Figure 2a to define ĉλ(S ′),
estimates the variance well. Therefore in all the simulations we have used this grid. However,

it is worth bearing in mind that if the alternative were true and the significant coefficients

lie only in certain regions of Z2 (for example, only on the r1 and r2 axis, which arises when

the nonstationarity has an additive structure), then the variance ĉλ(S ′) may be too large

compared with λd maxr∈S |Âλ(g; r)|2, thus reducing the power of the test. Therefore we

suggest comparing the p-values of the test with respect to other configurations of S ′.

2. Selecting the weight function g(·): We recall from Example 4.1, if g(ω) = exp(iv′ω),
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Figure 2: (a) The r grid gives possible r values that can be used in the test. The real and
imaginary ‘•’ values are used in the testing procedure (this is set S), whereas the real and
imaginary ‘∆’ values are used to calculate the standard error (this is set S ′). (b) The v grid
used to construct g(·) for the test.

then Âλ(g; r) estimates changes in the covariance at lag v. In practice, we are unlikely to

know which v to use, therefore we measure the aggregate change of several covariance lags

together. In this case we use the weight function g(ω) =
∑p

j=1 e
iv′jω.

The choice of vj should depend on the density of the sampling region. More precisely,

since there are n observations in [−λ/2, λ/2]d, the ‘average spacing’ between the observations

on each axis is s = λ/n1/d. Therefore, we do not have enough data to reliably estimate the

nonstationary covariance at covariance lags far smaller than s. In all the simulations, we

define the v grid as V = {vj = (vj1, vj2)
′ ∈ Rd : vjk = −s,−s/2, 0, s/2, s, for k = 1, 2}

such that vj + vj′ 6= 0 for vj,vj′ ∈ V. In Figure 2b we give the grid for n = 1000, λ = 5

(s ≈ 0.16). We should mention that if the support of the empirical covariance of the data

appears far greater than s = λ/n1/d, then using a wider v grid is appropriate.

If changes in the covariance function happen mainly at lags much smaller than s = λ/n1/d,

then data is not available to detect changes in the covariance structure.

7 Numerical Study

7.1 Simulation study

In this section we illustrate the performance of the test TS,S′ and discuss its applicability to

various situations. We will use the specifications given in Section 6. All the tests are done

at the 5% level and all results are based on 500 replications.

7.1.1 Models under the null

We consider different choices of (n, λ) pairs. In particular, we consider n = 50, 100, 500, 1000

and 2000 with λ = 5 to include a wide spectrum of (n, λ) combinations. Further the sampling
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locations are generated from a uniform distribution as well as a non-uniform distribution on

[−λ/2, λ/2]2 (See Figure 3a and 3b). To check for robustness of our test to deviations from

uniformity of the locations, we sample from this non-uniform distribution. Spatial locations

are often clustered and we model this using a mixture distribution. More precisely, {sj} are

iid random variables with two clusters modelled with

s =

(
sx
sy

)
=
λ

3

(
U1

U2

)
+
λ

3

(
V1
V2

)
+
λ

3

(
W1

W2

)
, (14)

where U1, U2, . . . ,W2 are independent random variables; U1 and U2 are uniform random vari-

ables defined on [−1/2, 1/2], V1 ∼ TN(1/4, 1/10, (−1/2, 1/2)), V2 ∼ TN(1/4, 1/10, (−1/2, 1/2)),

W1 ∼ TN(−1/4, 1/10, (−1/2, 1/2)), W2 ∼ TN(−1/4, 1/10, (−1/2, 1/2)) and TN(µ, σ2, (−1/2, 1/2))

denotes a truncated normal distribution with non-truncated mean µ, variance σ2 and cor-

responding truncation region [−1/2, 1/2]. Note that the two bivariate normal distributions

with means (1/4, 1/4) and (−1/4,−1/4) model the centres of the two clusters.

In order to determine the size of our test we focus on random fields with the exponential

covariance

c(h) = exp (−||h||/ρ), (15)

with different range parameters ρ. In particular, for empirical size calculations we consider

ρ = 2, 4/3, 1, 2/3, 1/3; thus the percentage of the range of covariance will be between 7% −
40% of the spatial domain (the size of the spatial domain in all simulations under the null

is λ = 5). A plot of the correlations is given in Figure 4.

To assess the performance of the test for non-Gaussian spatial random fields, we consider

the logarithm of the absolute of the Gaussian random field. The resulting process will be a

non-Gaussian stationary random field with a different correlation structure to the original

Gaussian spatial random field. We also consider the case that the original observations are

perturbed by a small amount of measurement error, i.e., Yj = Z(sj) + εj, where {εj} are iid

normal random variables with mean zero and variance 0.12 (the measurement error standard

deviation is about 10% of the standard deviation of the random field).

7.1.2 Discussion of simulations under the null

In Table 1 we report the results of TS,S′ under the null hypothesis. Focussing first on the

simulations in the Gaussian case using the test statistic TS,S′ , we observe that in the case that

the range of the covariance function is large with respect to the size of the spatial domain

(the case ρ = 2 corresponds to 40% of the spatial domain), the empirical type I errors are

inflated (see Figure 4). This is not surprising because (a) as can be seen from the proof of

Theorem 2.1(i) the approximation errors in the decorrelation result depend on the rate of
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Gaussian log |Gaussian| Non-uniform

ρ
n n n

50 100 500 1000 2000 50 100 500 1000 2000 50 100 500 1000 2000

2
0.09 0.05 0.13 0.14 0.18 0.05 0.03 0.06 0.07 0.08 0.03 0.03 0.01 0.01 0.01
0.08 0.04 0.12 0.13 0.18 0.05 0.03 0.06 0.07 0.08 0.02 0.03 0.01 0.02 0.01

4/3
0.05 0.05 0.08 0.10 0.09 0.04 0.05 0.06 0.06 0.05 0.02 0.03 0.02 0.01 0.01
0.05 0.04 0.07 0.10 0.09 0.03 0.05 0.05 0.06 0.06 0.02 0.02 0.02 0.01 0.01

1
0.04 0.04 0.04 0.08 0.08 0.04 0.04 0.06 0.08 0.08 0.02 0.02 0.01 0.01 0.01
0.05 0.03 0.04 0.08 0.07 0.03 0.05 0.06 0.07 0.08 0.02 0.02 0.01 0.01 0.01

2/3
0.02 0.03 0.05 0.06 0.09 0.03 0.04 0.04 0.06 0.06 0.01 0.02 0.01 0.01 0.01
0.02 0.04 0.05 0.06 0.09 0.03 0.04 0.04 0.06 0.06 0.01 0.02 0.01 0.01 0.01

1/3
0.03 0.03 0.03 0.05 0.07 0.03 0.04 0.04 0.04 0.04 0.02 0.02 0.02 0.01 0.01
0.03 0.03 0.03 0.05 0.06 0.03 0.04 0.04 0.04 0.05 0.02 0.02 0.02 0.01 0.01

Table 1: Empirical type I errors (at 5% level) based on TS,S′ with λ = 5 for Gaussian,
log |Gaussian|, and data with non-uniform locations based on Exponential correlation func-
tions. For each ρ the first row corresponds to the original data and the second row corre-
sponds to the data with measurement error.

decay of the covariance tails; if the covariance is thick-tailed and λ is quite small the DFTs

will still have some correlation, and (b) asymptotic normality of Âλ(g; r) requires the range

of dependence being far smaller than the size of the spatial domain. We also observe that

when the spatial domain is densely sampled and the range of the covariance is large with

respect to the size of spatial domain then there is also a slight inflation of the type I error

(this is due to the quality of the variance estimator ĉλ(S ′) which tends to underestimate the

variance when n is extremely large). However, it is reassuring to see in the case that ρ is

moderately large with respect to λ, the empirical type I errors are quite close to the 5% level

(for example, when ρ = 1 which corresponds to 20% of the range).

The non-Gaussian random field (logarithm of the absolute of the Gaussian random ran-

dom field) has empirical type I errors which are close to the 5% level even when the range

of the covariance is very large with respect to the size of the domain. This is because the

log transform tends to reduce the range of correlation. We further observe that when the

locations are sampled from a mixture distribution (not uniform), empirical type I errors are

below the 5% level. Some what surprisingly, this suggests the test is conservative to certain

deviations from uniformity of the locations.

7.1.3 Models under the alternative

To assess the power of the test based on TS,S′ we consider two different nonstationary spatial

models (see, NS1 and NS2 described below). Both models are constructed such that the

variance is constant over the random field and the nonstationarity arises only in the spatial

correlation.

We generate Gaussian data with constant mean µ = 0 and the following nonstationary

correlation structures:
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(NS1) The nonstationary correlation function considered in Paciorek and Schervish [2006]

and Jun and Genton [2012] which has the following form:

cλ(s1, s2) = |Σ
(s1
λ

)
|1/4|Σ

(s2
λ

)
|1/4
∣∣∣∣Σ(s1

λ
) + Σ(s2

λ
)

2

∣∣∣∣−1/2 exp[−
√
Qλ(s1, s2)],

where | · | denotes the determinant of a matrix, Qλ(s1, s2) = 2(s1 − s2)
′
[Σ(s1

λ
) +

Σ(s2
λ

)]−1(s1 − s2) and Σ(s
λ
) = Γ(s

λ
)ΛΓ(s

λ
)
′
, where

Γ
(s
λ

)
=

[
γ1(s/λ) −γ2(s/λ)

γ2(s/λ) γ1(s/λ)

]
, Λ =

[
1 0

0 1
2

]
,

with γ1(s/λ) = log (sx/λ+ 0.75), γ2(s/λ) = (sx/λ)2 + (sy/λ)2, and s = (sx, sy)
′
. The

functions γ1(·) and γ2(·) are chosen such that the nonstationary correlation changes

smoothly through space (see, Jun and Genton [2012]).

(NS2) Whereas in the previous model we considered smooth changes over space, in the second

example we consider a piecewise stationary model. The spatial domain [−λ/2, λ/2]2 is

partitioned into four squares. The spatial random field in each square is independent

of the others and stationary with exponential covariance function (defined in (15)) and

range parameters ρ = 1, 2/3, 1/2, and 1/3, respectively.

To understand the influence that the sample size n has on the power of the test we consider

the above models with the following (n, λ)-combinations, ranging from a sparser set-up to a

denser set-up:

(a) Model NS1: n = 50, 100, 500, 1000, 2000 and λ = 20, 40.

(b) Model NS2: n = 50, 100, 500, 1000, 2000 and λ = 5.

7.1.4 Discussion of simulations under the alternative

The empirical powers based on TS,S′ are given Table 2.

We observe that for any given model and λ, the power increases as the average spacing

λ/
√
n decreases. This is expected, because when the spatial random field is more densely

sampled we have more information about the covariance structure. In particular, if the

average spacing is within the main support of the covariance then the test is better able to

discriminate the changing covariance structures.

Comparing powers, we do observe that the power for the log |Gaussian| spatial random

field is a lot lower than the power for the Gaussian spatial random field. To understand

the reason for the lower power, we recall that the spatial covariance is cov[X(s1), X(s2)] =
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Gaussian log |Gaussian|
n n

Model λ 50 100 500 1000 2000 50 100 500 1000 2000

NS1
20

0.02 0.05 0.19 0.47 0.70 0.04 0.04 0.07 0.12 0.51
0.03 0.04 0.18 0.46 0.71 0.04 0.04 0.07 0.12 0.51

40
0.03 0.04 0.10 0.35 0.85 0.04 0.05 0.05 0.05 0.18
0.04 0.04 0.09 0.36 0.85 0.04 0.05 0.05 0.05 0.17

NS2 5
0.05 0.04 0.11 0.24 0.36 0.05 0.04 0.05 0.11 0.15
0.05 0.04 0.11 0.24 0.36 0.06 0.04 0.05 0.11 0.15

Table 2: Empirical powers based on TS,S′ for the non-stationary models NS1 and NS2. For
each λ the first row corresponds to the original data and the second row corresponds to the
data with measurement error.

cov[log |Z(s1)|, log |Z(s2)|], where Z(s) is a non-stationary, constant variance, Gaussian ran-

dom field with covariance function (NS1). Therefore, when the difference between s1 and

s2 is very small cov[X(s1), X(s2))] is close to constant over space (since var(log |Z(s)|) is

constant over space). Thus the test cannot pick-up on short-range differences. On the other

hand, when the difference between s1 and s2 is just moderately large, the log-transform

rapidly decorrelates X(s1) and X(s2), rendering differences in the correlation structure over

the medium to long range exceedingly small and difficult to detect. These issues become

more pronounced for λ = 40 (we checked this by making covariogram plots of several realisa-

tions). The power tends to be a lot lower for model NS2 than NS1. This is probably because

the local covariance structure in model NS2 only ranges from 1/3 to 1 and is confined to a

limited spatial domain λ = 5, again making it difficult to detect the nonstationarity.

Finally, we mention that in all the simulations (under the null and alternative) we have

used a =
√
n/2 as the number of a-frequencies in definition of Âλ(g; r). This seemed to

give reasonable results. However, when the support of the empirical covariance is large with

respect to the size of the spatial domain and n is large, using a =
√
n/2 can sometimes lead

to ĉλ(S) underestimating the variance of {Âλ(g; r); r = (0, 1), (1, 1), (1, 0), (−1, 1)}. The

reason for this can also be seen from the theoretical expression of the variance of Âλ(g; r).

Subsequently, this leads to an inflation of the type I error. Therefore, in such situations it

is reasonable to do the test using a =
√
n. However, some care needs to be taken, as using

large a can lead to a loss in power.

7.2 Ground ozone

Tropospheric ozone (ground ozone) is a major constituent of photochemical smog. It is a

powerful oxidant that damages human health and natural ecosystems. It is also an important

greenhouse gas. Unlike many other pollutants ozone is not directly emitted - it is a secondary

pollutant formed by sunlight-driven chemical reactions involving carbon monoxide, volatile

organic compounds and nitrogen oxide. The concentration of ozone in any given location and
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time depends on several factors, including the existence of heavy industry, density of vehicles

and weather factors, in particular high temperatures (which drive the chemical reaction) but

also wind (which can spread the ozone); see The Royal Society Special Policy Report 15/08

for further details.

In order to monitor air quality, the United States Environmental Protection Agency

(EPA) measures the hourly/daily ground ozone from over 900 locations (both rural and

urban) in the United States (see In this section, our objective is to use this data to understand

some of the spatial features observed in ground ozone. The data we consider is the daily

average and maximum surface ozone (the data is measured hourly from 9 AM until 4 PM

and the average and maximum evaluated from these eight observations) from April 1st, 2014

- September 30th, 2014 (183 days); see We focus on the Ohio Central Valley and South

East of the US, in particular the rectangle: longitude [−100,−80] and latitude [30, 43]. We

choose this area because there was a high concentration of locations, which consistently

gives measurements throughout this period. There are 489 stations in this region, and on

any given day (from April 1st, 2014 - September 30th, 2014) between 472-489 stations are

observed. The ground ozone is measured in parts per million (PPM).

For each day between April 1st - September 30th we apply the test for stationarity. We

use the test statistics TS,S′ defined in (5) with the S and S ′ defined in Section 6. Since

[−100,−80] × [30, 43] is a rectangle, we let λ1 = 20 and λ2 = 13 and use as the average

spacing on each axis s1 = λ1/
√
n ≈ 0.59 and s2 = λ2/

√
n ≈ 0.89 (since n is between

472− 489). In the definition of Âλ(g; r) (which is used to define TS,S′) we use

g(ω) =
∑

j=(j1,j2)∈V

exp

[
i

2
(5s1j1ω1 + 3s2j2ω2)

]
,

where V = {{−2,−1, 0, 1, 2} × {1, 2}, {0, 1, 2} × {0}}. Note that compared to Section 6 we

used a wider v grid, stretching from [−3s1, 3s1] ≈ [−2.7, 2.7] and [−5s2, 5s2] ≈ [−3, 3]. This

is because, in general the range of the empirical covariance of the ozone data was relatively

wide (usually over 2).

In Figure 5 we plot the value of the test statistic TS,S′ over time, for both average and

maximum ozone. Note that under the null the 5%, 2%, 1%, 0.5% and 0.1% rejection regions

correspond to 11.56, 15, 18, 21 and 29, respectively. We observe that there seems to be some

correlation between the average and maximum test statistics (this is also seen in Figure 6).

Furthermore, there seems to be some clustering over time in the large test statistics. For

example, for four days towards the end of September the spatial random fields appear highly

nonstationary.

The rejection rates for the tests on maximum and average ozone are given in Table 3,

where we observe that there are more rejections than we would expect under the null. We

note that if we were to use the Bonferonni correction at the 5% level, then a statistically
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significant test occurs when the p-value is less than 5/183 = 0.027% (which corresponds

to a critical value of over 36). We observe from Figure 5 that none of the test statistics

are larger than 36. However, given that a large number of tests were done and the sample

autocorrelation of the test statistics over time suggest short term positive correlation (see

Figure 6) using a Bonferonni correction is a conservative method for multiple testing.

Rejection level 5% 2% 1% 0.5% 0.1%
TS,S′ for Average ozone 12.5% 6.0% 2.7% 1.6% 0%
TS,S′ for Maximum ozone 9.8% 4.4% 2.7% 1.6% 0.54%

Table 3: Rejection rates for the test statistics of average and maximum ozone

Instead, to understand whether there is any evidence of spatial nonstationarity (at least

at some time points), in Figure 7 we give a quantile-quantile plot (QQplot) of the empirical

quantiles of TS,S′ against the theoretical quantiles under the null. We recall, if the spatial

process were stationary on all but a few days, the majority of the tests would lie on the

x = y line and only in the larger quantiles would there be a deviation from this line (see

Efron [2012], Chapter 3). However, we observe that overall there is not a particularly good

fit between the data and the empirical distribution under the null. To check if this is simply

because ĉλ(S ′) is underestimating the variance (which results in the points lying on a larger

gradient) we redo the test using a =
√
n in the definition of Âλ(g; r) (recall from Section

7.1 that using too few a-frequencies in the definition in Âλ(g; r) sometimes results in ĉλ(S ′)
underestimating the variance). However, this does not give a better fitting QQplot.

Therefore, the mismatch between the empirical and theoretical quantiles possibly suggests

that the ozone data is spatially nonstationary over the entire time duration. To investigate

this further, we make a QQplot of the data against the theoretical distribution of a simple

alternative. To do this, we recall some of the properties of the test statistic and Âλ(g; r) under

the null and alternative. In Section 3 we showed that under the null of spatial stationarity

TS,S′ =
λd maxr∈S |Âλ(g; r)|2

ĉλ(S ′)
D→

max1≤i≤|S|(Z
2
2i−1 + Z2

2i)
1

2|S′|−1
∑2(|S|+|S′|)

j=2|S|+1 (Zj − Z̄)2

where {Zi; 1 ≤ i ≤ 2(|S|+ |S ′|)} are iid standard normal random variables. However, under

the alternative of nonstationarity, in Section 4, we showed that Âλ(g; r) would have a non-

zero mean. Thus to crudely reproduce the test statistic under a specific alternative we obtain

the quantiles of the shifted distribution

Y =
max1≤i≤|S|(X

2
2i−1 +X2

2i)
1

2|S′|−1
∑2(|S|+|S′|)

j=2|S|+1 (Xj − X̄)2
, (16)

where {Xi; 1 ≤ i ≤ 2(|S| + |S ′|)} are independent normal random variables with variance
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one, E[X1] = 1, E[X2] = 1 and for 3 ≤ i ≤ 2(|S|+ |S ′|), E[Xi] = 0. We use that for 1 ≤ i ≤ 2

E[Xi] = 1 to model a mean shift in one of the coefficients Âλ(g; r). The QQplot of TS,S′
against the distribution of this alternative is given in Figure 8. There is a relatively good

fit of the empirical quantiles with the distribution Y (though the empirical quantiles in the

upper tail are larger than expected under this alternative). This suggests that the ozone

data is spatially nonstationary and could be modelled with the same spatially nonstationary

model (note this is a very tentative conjecture). Diagnostic plots of Âλ(g; r) calculated using

the maximum ozone at several time points are given in the supplementary material. They

are not all the same, but certain patterns can be seen. For example, the imaginary coefficient

corresponding to r = (0, 1)′ are statistically significant in the majority of cases with high

positive values. This adds further support to the conjecture that the ozone data is spatially

nonstationary but the nonstationary features are similar over time.

However, even if this conjecture were true, it is useful to understand what causes the

test statistic TS,S′ to be either large or small. To see whether large or small TS,S′ possibly

imply different features in the spatial random field we compare two extreme examples. In

particular, the maximum ozone on April 4th (when TS,S′ = 2.54) and the maximum ozone

on April 6th (when TS,S′ = 18.79). In Figures 10 and 11 we plot both maximum ozone and

the corresponding sample covariograms (estimated using the function variog in R) for these

days. We observe the two covariograms are very different; the empirical covariogram for

the maximum ozone on April 4th plateaus to zero at large lags, whereas the the empirical

covariogram for the maximum ozone on April 6th does not appear to plateau. This could

be due to nonstationarity in the spatial mean or covariance. Therefore for both these days

we partition the region into 4 equal size quarters and evaluated the covariogram over each

quarters (see, Figure 10 and 11). In the case of April 4th, the short region covariograms tend

to follow the large region covariogram (with the exception of one region). In the case of April

6th, the short region covariograms are very different to the large region covariogram. This

suggests that when TS,S′ is large the ‘degree’ of nonstationarity is a lot greater than when

TS,S′ is small (though we stress that the choice of function g(ω) determines the nonstationary

features TS,S′ is able to detect).

To summarize, our analysis suggests that daily ozone in the region [−100,−80]× [30, 43]

is spatially nonstationary, with possibly similar nonstationary features over time. However,

it appears that the degree of nonstationarity varies over time and in many instances it is

difficult to discriminate between the spatial field being stationary or nonstationary. In the

section below we check whether the locations of the stations have any influence on the results

of the test.
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The influence of the measurement station locations on the test

In Figures 10 and 11 we see that the location of the stations do not appear to be uniform. We

recall that an underlying mathematical assumption in our procedure is that the locations are

uniformly distributed. Therefore it is important to determine the influence these locations

may have on the test. To assess the finite sample properties of the test statistics over

the given set of observation stations on the rectangle [−100,−80] × [30, 43], we simulate a

stationary Gaussian distribution with exponential covariance and range parameter ρ = 2.8.

For each realisation we apply the test statistic using exactly the same specifications as those

used for the ozone data (i.e., same S, S ′, g(ω) and a =
√
n/2). The empirical rejection

rates over 1000 simulations at the 5%, 2%, 1% and 0.5% level were 6.8%, 1.7%, 0.8% and

0.6% respectively. A QQplot of the empirical quantiles against the theoretical ones under

the null is given in Figure 9. We see that the for lower quantiles there is not an exact match

between the empirical and theoretical quantiles. However, for the larger quantiles there is

reasonable match, noting that the empirical rejections are close to the theoretical rejections.

To check whether the distribution of Y , defined in (16), gives a better fit, in Figure 9 we

give a QQplot of the empirical distribution again with the distribution of Y , and did not see

an improvement in fit.

Our analysis suggests that the lack of uniformity of the locations does not have a huge

impact on the distribution under the null (at least for this exponential spatial covariance).
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Figure 3: Examples of (a) uniform and (b) locations sampled from the mixture distribution
in (14) with n = 1000 and λ = 5.
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Figure 4: Plot of the Exponential correlation function with the range parameters used in the
simulations.
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Figure 5: The test statistic TS,S′ plotted over time. The horizontal lines denote the 5%, 2%,
1% and 0.5% rejection regions. Top: Test statistic for average ozone. Bottom: Test statistic
for maximum ozone.
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Figure 6: Sample autocorrelation and cross-correlations of the test statistics.
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Figure 7: QQplot of TS,S′ against the theoretical distribution under the null. Top: Average.
Bottom: Maximum.
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Figure 8: QQplot of data against the theoretical distribution under the alternative in equa-
tion (16). Top: Average. Bottom: Maximum.
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Figure 9: Top: QQplot of test statistic for simulated data against the theoretical distribution
under null. Bottom: QQplot of test statistic for simulated data against the alternative in
equation (16)
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Figure 10: Summary of maximum ozone on 4th April, 2014. Left: Plot of maximum ozone.
Right: The estimated covariograms over the entire region and the corresponding quarters.
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Figure 11: Summary of maximum ozone on 6th April, 2014. Left: Plot of maximum ozone.
Right: The estimated covariograms over the entire region and the corresponding quarters.
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