Supplementary material

The supplementary material contains:
e The asymptotic ‘finite sample’ approximations of the distribution of the test statistics.
e The auxiliary results which are used to define the tests in Sections 4 and 5.
e The simulations.

e The proof of the results.

6 Asymptotic ‘finite sample’ approximations of the dis-

tribution of the test statistics under the null

In this section we use the results in Section 4.4 to obtain finite sample asymptotic approximations
to the distribution of the test statistics T, | 1/2(P,P’), Ty, 5-1/2(P, P) and M, , 5-12(P, P’)
under the null of stationarity.

Let {Zg;(r1,12),Z1j(r1,72);7 = 1,....7/2} and {Z;4;5 = 1,....2|P'|,k = 1,...,T/2}
denote iid standard Gaussian random variables (we use a double index because it simplifies
some of the notations later on). We recall from the definition of ‘/}g(wk;P’ ) in (29) that it
is composed of (2M + 1)-local average of Ra,(-) and Jay(-), each term being asymptotically
normal. Therefore we replace all the fa,(-) and 3@,(-) in the definition of ‘A/g(wk;P’ ) with
standard normal distributions to give

)\d/? é)%ag(wk;rh?b) )\d/Q (wk77‘1>r2)

~tri(r,re) ~trg(re, ),

Vy(w; P) Vy(wi; P7)
where
Ra Z
tri(ri,ry) = A2 agAwk,m,rg Rk(rhT;)p, _
Vy(wi; P) \/ 2M+1)|7>/\ 121— M 2t ( ki — Zi)?
Sa, Z
tri(ry,m) = A2 £ KiT1T2) Ik(”“larz)”)l _
Volwr: P) \/ DT SEMTOPTT Soiemt Dogot (Zjwri — Z1)?
and Z;, = 2M+1 @M ZZ_ M ZQWD | Zj k+i 1s the local average.

Noting that the test statistic is in terms of ’\dTT|A\g o-1/2(r1,72) %, we replace the real and
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imaginary parts of @, (wy; 71, 72)/1/ Vy(wk; P’) with the above to give

TX? ’A\g7{7—1/2 (7'17 TZ) |2

2 ‘/jg’v—l/Q

~ XTI’TQ

where

2 2
T/2 T/2

T T
Xoiro = 3 ;t&k(ﬁ,rz) +§ ;tl,k(rlﬂb) ,

for other (ry,r2), we use independent {Zy r(r1,72), Zy 1(71,72)} but the same {Z;,}. We also
recall that we estimate the variance V| 1,2, therefore we approximate its distribution with a
weighted chi-squared with (2|P’| — 1) degrees of freedom. Since the orthogonal sample which
was used to estimate it contained 2|P’| terms

~

‘/97‘771/2 - 1 X2
Vv 2P| =177

Therefore, based on the above, the following distribution is used

1
Tl,g,‘771/2 (P,,P/) ~ 1

2 X”'177’2
2|7>/|—1X2‘7)/|*1 (r1,r2)EST

to approximate the ‘asymptotic finite sample properties’ of T | 5-1/2(P,P’), under the null. Us-
ing the same method we can obtain the ‘asymptotiCAﬁnite sample propertigs’ for M, | p-1/2 (P, P.
~ Next we consider the local average DFTs, B 1y (Wjm;T1,72), Dgﬁ_l/gﬁ;H(rl, r9) and
D, $-121.5(r1,72), which lead to the test statistics T, 125 and Ty 5o1/2,. Using the

arguments given above we have,

~ 2
d .
H\ ‘Bgﬁ_l oogg (@35 71, 72)

~ Yju(ri,re),

where

2

_|_

2

H H
1 1
Yig(ry,ra) = ‘\/_ﬁ Z trjH+k(T1,72) \/_F Z trimer(ri,ra)
k=1 k=1

Using the above, we estimate the distribution of 1397‘7,1/271;11(7“1, r9) with

H/\dﬁgJA/—l/Q,l;H(’l“l,TQ) ~ — Z Y}H("“l,?"g).
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This gives us the ‘asymptotic finite sample’ distributions of T, | 512, (P, P’) and M, | 51/2 (P, P’).
In order to derive the sampling properties of Ty | 1.2 (P, P') and M, 512 (P, P’), we

recall that D 12 g7 (71, 72) involves W, 512 (wj; P') and we approximate this distribution

by mdependent chi-squares {2‘7,}|_1Xg|7),|71’k}fle. This gives

T/2H

2H

Y,

jH(”“lﬂ“Q)

12 :
=1 AP X2[P -1,k

Using this we can obtain the distributions of Ty, p125(P,P') and M, 51/ 557(P, P’). Note
that the same {2|P, 1X2|7,,| ) k}k 1 is used for all {D 12 (T1,T2); (rl, ry) € P}.
The ‘asymptotic finite sample’ distribution derlved above are used in all the simulations

below.

7 Auxiliary Results

7.1 Results in the case of stationarity

We first consider the sampling properties of A\g,h(rl, 79), which is used to define the test statistics
Tl,g,‘/}_l/Q (P, PI) and M17gy‘7_1/2 (P, Pl) .

Lemma 7.1 Suppose Assumptions 3.1 and 4.1 hold, 0 < ro,ry < T/2 —1, vy # —r3 and

h: [0, 7] = R is a Lipschitz continuous function. Then

)

T [

—COV

9 §Rfélg,h(lrla 7/12)7 §R;{g,h<r37 714)] - IT1=’I‘3[T2=T4 ‘/g,h(ﬂm ) wrg) + O (E)\,a,n + Tl) (42)
T [ ~ ~ (

—=Cov %Ag,h(,r'b T?)v %Ag,h(r?n 7’4):| = Ir1:r3[r2:r4‘/g,h(9'r1 ) w?"z) + O

Oran—+T71
2 an + )

-~

and )\dTCOV[%A\g’h('I‘l, r2), SAgn(rs,74)] = OUnan + T71) where,

‘/97}1(97‘1’(*‘)7”2 - / |h | V w Qr17wr2>dw+ 271' dﬂ_?/ / /D2 Ql QQ (wl)h(WQ)
X fa (8 + Qw1 + Wiy, D2, w2, — Q. —wa — Wy, ) A dQydwy dws.

Let {(rj,7;);1 < j < m} be a collection of integer vectors constrained such that 0 < r; <T/2—1

and r;, # —r;,. Then under stationarity of {Z:(s)} and sufficient mizing conditions we have,

INT | RA (1) SAg(rs. ;) RAGH (T Tin)  SAga(r750)
2 %,h(ﬂ"‘jl ’ wle )1/2 ’ %1h(er1 ? wrjl )1/2 7 ’ ‘/gvh(ﬂrjm ) wrjm )1/2 ’ %1h(ﬂrjm ’ wT]"m )1/2
BN (0, o).
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We note that when ||r1]; << A and |re| << T that the variances above approximate to

V(s w00) = Vy2(0,0) + O (”?”1 n %) .

We now consider the sampling properties of Eg,h; u(ry, o) and ﬁg,h,v; 1 (7r1,72), which are used
to define the test statistics Ty 512 (P, P') and M, , 51723y, (P, P’). We start by studying

Bg,h;H(’ﬁ, 7“2)-

Lemma 7.2 Suppose Assumptions 3.1 and 4.1 hold, 0 < ro,ry < T/2 —1, 11 # —r3 and
h:[0,7] = R is a Lipschitz continuous function. Then

M Hcov [%ég,h;H(ij; r1,732), %ég,h;g(ij; T3, 7"4)}

= Ir1:r3[r2=r4Wg,h<ij; er,wm) + O (g)\,a,n + Hl) . (43)

Ezactly the same result holds for \*Hcov [%E%}L;H(ij; T1,73), %EM;H(%H; T3, 7“4)}, where

2Wg,h (ija Q'Pl 9 (JJT’Q)
T

Wi+1)H " 2V Q J T WE+nH PG+ H Q Q
g | P o+ s [ [ [ i)

JH jH

Xh(wl)h(WQ)fél(Ql + Q'f‘pwl + w?“ga 927 Wa, _QQ - QT17 —Wo — w’rg)dﬂldQZdwldw27

noting that the first (covariance) term in Wy, = O(1), whereas the second term of W, which is
the fourth order cumulant term is of order O(H/T) since the cumulant term involves a double
integral which is of order O((H/T)?). On the other hand, if (r1,72), (r3,74) # 0, then (with 0 <
ro,74 < T/2 and (r1,72) # —(r3,74)) we have XY Hcov %Eg,h;H(ij; T1,7T9), %Eg,h;H(WjH; r3, 7"4)} =
O(lran) and for ji # ja,

~ ~ H
/\dHCOV [%Bg,h;H@ule; T1, 7’2)7 3:EBg,h;H(("}sz; T3, T4)] = 0 (gx\,a,n + H_l + T) ) (44)
where the same holds for \* Hcov [%B\g,h;H(wﬁH; T1,79), %Eg,h;H(ijH; T3, m)] and also for \X* Hcov [%B\g
Let {(kj,7r1,,72,);1 < j <m,(r1,7m2) € P} be a collection of integer vectors constrained such
that, 1 < k; <T/2,1 <r; <T/2 and r;, # —r;,. Then under stationarity of {Z(s)} and

sufficient mizing conditions we have,

RByn(Whym; T1i T2) SByn(Weyms Ty T2,4)
Wg,h(wij)1/2 ’ Wg7h<wij)1/2

2) N (07 IQm|'P|) )

VAH

1< <m,(ry,ry) €P
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where W, (w) = Wy 1(w;0,0).

In the following lemma we consider the sampling properties of lA)g’h,v; u(r1,7m2). Note that
we consider general functions v, whereas in Section 4.3 we set v to be the variance of W, (w),

which means the mean of D is asymptotically pivotal.

Lemma 7.3 Suppose the assumptions in Lemma 7.2 hold and h : [0,7] — R is a Lipschitz

continuous function. Then we have

E[HA Dy p o (11, 72)]

1 H  NH[[TZ] (log A + log [m;|)]?
= Eono(Sny,0r) +0 (6 tgtT (T ()
and
T drr N drr N
Ecov [)\ HDygpyr(r1,72), \"HDg .11 (73, 7“4)}
. Ug,h,v(Qmawrz) +0 (% + g)\,a,n) rL=7r3 and T =T4 (46)
O (% + 6,\@,”) otherwise
where,

1 [T Wyn(w; Qpy wye
Eg,h,v(QruwrQ) = %/ g7h( Q)dw
0

v(w)
™ . 2
and Ugpo(Qpy,wpy) = l/ |W97h<(|";7(2;|127w7“2)| duo.
T Jo

Let {(r;,rj); 1 < j < m} be a collection of integer vectors constrained such that1 < k; <T/2,
1 <r; <T/2 and rj, # —rj,, then we have

T /\dHﬁg,h,v;H(rjnTh) - Eg,hﬂ)
D
Y : 2 N0, Iy,
2HU, ., R : N(O, Lom)
MNHDy i (7,05 Tj) — Egho

where Uy po = Uy pv(0,0) and Ey . = Eg1.(0,0).
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7.2 Results in the case of nonstationarity

We first generalize (14) from covariances to fourth order cumulants. We assume there exists a

function s such that

cov[Ziar(8); ZismyAa1(8 + V1), Ziynya1(8 + 02), Ziing a1 (8 + 3)]

3
S = 5 v; i
= Fhy b hai b ('vl,'ug,vg; —) +0 (H =1 2+5(Vi)pn ) 7 (47)

A T

where, SUp,, ; |5y o s (V1, V2, V35 8)| < [10_, pn: Bors(vs),

3
K ha bz (V15 D2, V35 8) = Ky ho hgsus (V15 V2, 033 8) | < fur — ug| Hﬁzw(%)ﬂhi,

i=1
3

|th1,h2,h3;u (’017 V2, U3; Sl) - /{hl,hz,h;;;u (,Ula V2, V3] 82) | S |Sl - 82|1 HBQ-HS(vi)phi'
i=1

Using the above, we define the location and time dependent fourth order spectral density as

Fu,4 (Qla Wi, 927 Wy, 937 w3; S)

1 .
- —i(hiwi+hows+hsw .
= @y E e e thawathws) Khy hahszu (U1, V2, U3} 8)
hi,ha,h3€Z R34

Xe*l’(v’lﬂl+1}§92+”én3)dvldvzd'ug_ (48>

In order to obtain the expressions below we start by generalizing the covariance result in (16)
to fourth order cumulants. By using Lee and Subba Rao [2015] and similar methods to those
used in Bandyopadhyay and Subba Rao [2016] it can be shown that

CUIH[J(le,ka), J(Qk1+rlawk2+7’2)7 J(Qk37wk4)’ J(Qk3+'r37wk4+r4)]

1 1 1
= T_)\db'f'Q_T’ALA(le"F"'l s Who+rys Qk3> Wky Q—ks—Ts s W—ky—rgs T1 — ’I"3) +0 (T2>\d + T)\d+1>

where,

bry 4 (21, w1, o, wo, N3, w35 71)

1
ot e o
= Fou (9, w1, Qo wy, Q3. ws; 8) e~ 278 2mir2u g gy,
s ) y ) y WE3, W3, ’
0 [—1/2,1/2]¢

and F), 4 is defined in (48).

Lemma 7.4 Suppose the assumptions in Assumptions 3.1 and 4.1 (generalized to the nonsta-
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tionary set-up) and (47) are satisfied. Then we have,

(1)

MNeov [y (Why; 1, 72), G (Why; 73, 74)] = Oroyra g s @Wha» Whys T1,73) + O (

and

(

d ~ . S R A ¢)) .
Aecov [ag(wkwfrl,rg),ag(wkm r3,7’4)] = brg,r4,k2,k4(wk‘2’wk4’r17r3) +0 (

We also have,

T)\d R ~
5 cov [Ag,h('rla r2), Agn(Ts, 7”4)}

T/2
_2 1
= T)\d Z h(WkQ)h(wk4)b£-2?r4,k27k4 (wk&? Wk;4; T, 7"3)
ko,ka=1
9 T/2 a

T Do 2L hen)hlwn)g () g(Qu,)
ko,ka=1k1,ks=—a

Xb'r‘g—r4,4(ﬂk1+'r1 ) wk‘g-‘rrza nga Wk4, ﬂ—k3—7‘27 w—k4—7‘4; T — 7"3) + O (

and

)\ ~ =
9 cov |:Ag,h(rla r2), Ag,h('r'g, Ty)
5 T2
- 2
B T\ Z h(wb)h(wk“)bf’;m,kz,k‘; (wk’z y Whkas T15 7'3)
ko,ks=1
, 12 a

e S h(wr)h(wr,)g(Qu,)g(R,)

ko,ka=1k1,k3=—a

Xb?“2+r4,4(ﬂk1+7'1 s Who4rg Q—kga W_ks, ng—&—rga Wha4ra> T1 + T3) + O (

8 Simulations

8.1 Set-up

Ly
T

1
— 4 —

1
— 4 =

1
+ g)\,a,n) )

T

1
— 4 —

1
+ EA,a,n) .

T

1
A

A

A

1
+ ék,a,n) .

We now assess the finite sample performances of the test statistics described above through

simulations. In all cases we consider mean zero spatio-temporal processes, where T" = 200

and at each time point we observe n = 100 or 500 locations (the locations are drawn from a

uniform distribution defined on [—\/2,A/2]? and we use the same set of locations at each time

point). All tests are done at the 5% level and all results are based on 300 replications. Further,
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we investigate the performances of the tests when the coefficients @,(wy; 71, 72), as defined in
Section 4.1, are being calculated while both removing and keeping the ‘nugget effect’” Nr (in
Tables 1-6 the rejection rates for the test statistics without removing Np are reported in the
parentheses). All simulations are done for spatial dimension d = 2.

Next, we briefly discuss the implementation issues.

1. Choice of set P and P’: All test statistics depend on the choice of P and P’. In all simu-
lations described in this section we use P = {(1,0), (1,1),(0,1),(=1,1)} x {1,2} and P' =
{(1,0),(1,1),(0,1),(—1,1)} x {4, 5} to calculate empirical type I errors and overall powers.
Further, to test for stationarity over space, we take P = {(1,0), (1,1),(0,1),(—1,1)} x {0}
and P’ = {(2,0), (2,1), (2,2), (1,2),(0,2), (—1,2),

(—2,2),(—2,1)} x {0} and to test for stationarity over time, we take P = {(0,0)} x {1, 2}
and P’ = {(0,0)} x {4,5}.

2. Choice of g(-) : Based on the discussion in Remark 2.1 we use the weight function
g(Q2) = Zle ¢, The choice of v;’s should depend on the density of the sampling
region. Following the same rationale as described in Bandyopadhyay and Subba Rao
[2016], in all simulations we define the v grid as V = {v; = (vj1,vj2) € R? : vj, =
—s,—5/2,0,5/2,s, for k = 1,2} such that v; + v; # 0 for vj,v; € V, where s = \/n!/¢
is the ‘average spacing’ between the observations on each axis. We should mention that if
the support of the empirical covariance of the data appears far greater than s = A/ nt/d,

then using a wider v grid is appropriate. If changes in the spatial covariance function

1/d

happen mainly at lags much smaller than s = A/n'/?  then data is not available to detect

changes in the spatial covariance structure.
3. Choice of frequency grid: In all simulations we use a = /n in the definition of @y (wy; 71, 72).

4. Choice of H in the definition of Ty and Msy: For all simulations we use H = 10 and
H = 20.

5. Choice of M to calculate the local averages: In order to estimate Vj(wy) we use the esti-
mator \7g(wk; P’) (defined in (29)) with M = 2 (thus taking a local average of 5).

To obtain the critical values of the tests we use the asymptotic ‘finite sample’ approxima-
tions of the distributions of the test statistics as described in Section 4.4. For ease of discus-
sion below we refer to (i) T} 5-12 and M, -1/ as the average covariance test statistics (ii)
Ty, v-12 and My, | -1/2 ) as the average squared covariance test statistics and (iii) Ty, o121

and M 77 as the variance adjusted average squared covariance test statistics.

2,9,V —1/2
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8.2 Simulations under the null
8.2.1 Models

In order to define the spatio-temporal models, we start by defining the ‘innovations’ process.
Let {&/(s);s € R?,t € Z} denote a spatio-temporal stationary Gaussian random field which
is independent over time with spatial exponential covariance cov[e;(s1),e4(82)] = exp(—||s; —
s2|l2/p), where p is the ‘range parameter’. We do all the simulations under the null with
p=20.5,p=1and A =5 (in the case that p = 1 the range of dependence for the innovations
is 20%, whereas for p = 0.5 the range reduces to 10%; see Figure 1). We mention that the
decorrelation property of Fourier Transforms, given in Lemma 3.1 implicitly depends on the
range of dependence with respect to A. If the range of dependence is too large with respect
to the observed random field then the degree of correlation in the Fourier transforms will be

non-negligible (leading to false rejection of the null).

(S1) Spatially and temporally stationary Gaussian random field: We define a spatio-temporal
model with the temporal AR(1) structure Z;(s) = 0.57Z;_1(s) + &/(s).

(S2) Spatially and temporally stationary non-Gaussian random field: To induce non-linearity

and non-Gaussianity in the random field we use a Bilinear model of the form
Z1(8) = 0.5Z;_1(8) + 0.4Z;_1(8)e1_1(8) + &1(s).

We note that the nonlinear term 0.47;_1(s)e;_1(s) induces sporadic bursts in the spatio-
temporal process. The coefficients 0.5 and 0.4 are chosen to ensure that the process has a
finite second moment (see Subba Rao and Gabr [1984] for details).

8.2.2 Discussion

The results for model S1 and S2 are given Table 1.

We first consider the stationary Gaussian model (S1). The results for all the tests are
relatively good for both p = 0.5 and p = 1. However, for the average squared statistics (without
variance adjustment) for H = 10 and p = 1 there are some inflations in the type I error. This is
probably because without the variance adjustment the average squared statistics depend on the
asymptotic result W, 1/ (wjm) 51 (see (37)) which depends on the range parameter p and the
degree of non-Gaussianity. Model S1 is Gaussian, and it seems the error in this approximation
seems only to mildly impact the case H = 10 and p = 1.

The results from the simulations for the stationary but non-Gaussian model (S2) are very
different. The average covariance test results keep close to the nominal level (for both p =
0.5 and 1) however there is a substantial inflation in the type I error (between 70-90%) for

the average squared statistic without variance adjustment (for both H = 10 and H = 20).
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This is likely due to the non-Gaussianity of the process which seems to greatly impact the
rate that W, 5-1/2(w;m) 51 However, the variance adjusted average squared covariance test
statistics appear to keep close to the nominal level for both p = 0.5 and 1 and H = 10 and 20.
This demonstrates that W, -1/ (wjn) B 1isan asymptotic result and for finite samples it is
important to estimate the variance.

In all cases, both removing and keeping the nugget term Ny give comparable results.

Our results in the simulation study demonstrate that both the average covariance and the
variance adjusted average squared covariance test statistics perform well under the null, but
caution needs to be taken when interpreting the results of the non-variance adjusted average

squared covariance tests.

Model S1 Model S2
P P
0.5 1 0.5 1
n 100 500 100 500 100 500 100 500

T, ,p-12 | 0.08 (0.08) | 0.08 (0.07) | 0.07 (0.07) | 0.04 (0.04) | 0.09 (0.09) | 0.08 (0.09) | 0.09 (0.08) | 0.08 (0.07)
M,y | 0.04 (0.07) | 0.05 (0.06) | 0.05 (0.06) | 0.02 (0.02) | 0.06 (0.04) | 0.05 (0.06) | 0.07 (0.07) | 0.06 (0.08)

Ty, 012, | 0.04 (0.03) | 0.01 (0.01) | 0.06 (0.04) | 0.03 (0.02) | 0.45 (0.70) | 0.86 (0.91) | 0.62 (0.72) | 0.94 (0.98)

H=20 M, , 9172, | 0.07 (0.08) | 0.06 (0.05) | 0.07 (0.08) | 0.02 (0.03) | 0.48 (0.67) | 0.80 (0.88) | 0.60 (0.70) | 0.86 (0.88)
Ty, p-125 |0.05 (0.05) | 0.02 (0.01) | 0.07 (0.03) | 0.02 (0.01) | 0.06 (0.07) | 0.05 (0.04) | 0.05 (0.05) | 0.06 (0.05)
M2,g,l7’l/2./Vl7 0.05 (0.06) | 0.03 (0.03) | 0.05 (0.05) | 0.06 (0.05) | 0.04 (0.07) | 0.06 (0.07) | 0.10 (0.09) | 0.08 (0.08)
T2ﬁg,‘7,1/2,1 0.10 (0.10) | 0.08 (0.07) | 0.12 (0.12) | 0.13 (0.14) | 0.50 (0.71) | 0.85 (0.90) | 0.67 (0.78) | 0.85 (0.88)

He10 | Magpovzy | 0.08 (0.08) | 0.09 (0.08) | 0.11(0.12) | 0.16 (0.15) | 0.42 (0.58) | 0.65 (0.77) | 0.53 (0.67) | 0.79 (0.83)
T2,g,‘7’1/2,w 0.10 (0.08) | 0.04 (0.04) | 0.06 (0.04) | 0.04 (0.04) | 0.09 (0.10) | 0.06 (0.06) | 0.05 (0.06) | 0.08 (0.10)
MZ,g,";*l/2,w 0.05 (0.06) | 0.03 (0.04) | 0.06 (0.05) | 0.05 (0.05) | 0.08 (0.10) | 0.09 (0.09) | 0.10 (0.13) | 0.11 (0.12)

Table 1: Empirical type I errors at 5% level based on different tests with A = 5 for Gaussian
and non-Gaussian stationary data with innovations coming from a Gaussian random field with
exponential covariance functions. Rejection rate without removing Nr (see (19)) are in the
parentheses.

8.2.3 Simulations under null using the Whittle spatial covariance

Up to this point all the simulations were conducted using an exponential spatial covariance.
In this section our aim is to understand the behavior of the stationarity test for other spatial
covariance functions. A popular spatial covariance commonly used in spatial statistics, is the
Whittle correlation function (i.e., a Matérn correlation with smoothness parameter v = 1).
Note that, the feature that distinguishes the exponential from Whittle is that around zero the
exponential is peaked with no derivative whereas the Whittle is smooth. In this section we
consider again the spatio-temporal models (S1 and S2) defined in Section 8.2.1, but generate
the independent innovations €;(s) with a Gaussian process with a spatial Whittle covariance
i.e. covier(s1),ei(s2)] = (||s2 — s2ll2/p)K1(]|s1 — s2||2/p), where K is the second kind modified
Bessel function of order one. From the plots (Figure 2a and 2b) we see that the range parameter,
p, in both exponential and Whittle do not match. For example, when p = 0.5 or p = 1 the

Whittle correlation has much thicker tails than the exponential with the same range parameter.
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Since our test is based on the DFTs being close to uncorrelated (and this property is lost when
there is a lot of correlation in the original process compared with the size of the random field),
the Whittle model is expected to give larger type I errors compared with the exponential model
with the same range parameter. Therefore, in order to fairly compare the simulations using
the exponential and Whittle spatial covariances, we adjust the range parameters for the Whittle
correlations to have similar tail behavior as the exponential covariance. From a visual inspection
we find that the Whittle covariance with range parameters p = 0.37 and p = 0.72 are the closest
‘match’ to the exponential correlations with range parameters p = 0.5 and p = 1, respectively
(see, Figure 2a and 2b).

Based on the above setup the results are reported in Table 2. Comparing Tables 1 and 2
we observe that for the proportion of rejections the results are quite similar to what we noticed
for exponential correlations with p = 0.5 and 1. This suggests that the test for stationarity is

robust to different of types of stationary behavior.

1.0

i — Exp.withp=05
-- Exp. with p=1

0.8
1

Correlation
0.6

0.4
1

0.0
1

lags

Figure 1: Plot of the Exponential correlation function with the range parameters p = 0.5 and
p=1

8.3 Simulations under the alternative
8.3.1 Models

In order to induce spatial nonstationarity in the models (NS2) and (NS3) (defined below) we
define the Gaussian innovations process {n;(s);s € [-A\/2,\/2]?}, which is independent over

time with nonstationary covariance cov[n;(s1), n:(s2)] = cx(81, S2) = ko(S2 — S1; 81) where,

—-1/2

exp[—\/ Qxr(s1, 52)]7

2(3) + X(3)
2

ca(s1,82) =X <%) &> (%) |1/
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lags lags
(a) (b)
Figure 2: Plots of exponential and Whittle correlations with different range parameters.
Model S1 Model S2
p p
0.37 0.72 0.37 0.72
n 100 500 100 500 100 500 100 500
T,,5-12 | 007 (0.06) | 0.05 (0.05) | 0.08 (0.08) [ 0.08 (0.08) | 0.09 (0.09) | 0.08 (0.08) | 0.09 (0.08) | 0.07 (0.08)
M, g1 | 0.06 (0.07) | 0.06 (0.06) | 0.08 (0.06) | 0.04 (0.04) 007 (0.08) | 0.06 (0.07) | 0.09 (0.09) | 0.06 (0.08)
T,,p-12, | 005 (0.04) [ 0.02 (0.02) | 0.04 (0.04) | 0.05 (0.04) | 0.55 (0.73) | 0.97 (0.98) | 0.76 (0.82) | 0.95 (0.95)
He90 | Mag g1y | 006 (0.05) | 0.05 (0.05) | 0.07 (0.06) | 0.06 (0.06) 050 (0.68) | 0.88 (0.90) | 0.72 (0.77) | 0.92 (0.92)
T, , o2 | 0.04 (0.04) | 0.01 (0.03) | 0.05 (0.04) | 0.04 (0.04) | 0.06 (0.05) | 0.03 (0.04) | 0.06 (0.07) | 0.04 (0.04)
M, o125 | 0.06 (0.05) | 0.04 (0.03) | 0.06 (0.07) | 0.04 (0.04) | 0.06 (0.05) | 0.05 (0.07) | 0.09 (0.11) | 0.08 (0.09)
T,, 512, | 012 (0.12) [ 0.09 (0.09) | 0.13 (0.13) | 0.15 (0.15) | 0.61 (0.74) | 0.85 (0.96) | 0.75 (0.82) | 0.91 (0.92)
He10 | Moy vy | 0.09 (0.09) | 0.10 (0.10) | 0.13 (0.13) | 0.14 (0.12) | 0.46 (0.62) | 0.82 (0.86) | 0.66 (0.72) | 0.84 (0.88)
T, , o2 | 0.08 (0.08) | 0.03 (0.02) | 0.06 (0.04) | 0.06 (0.06) | 0.09 (0.10) | 0.06 (0.07) | 0.05 (0.06) | 0.06 (0.06)
M, 5125 | 0.07 (0.07) | 0.04 (0.03) | 0.06 (0.05) | 0.06 (0.06) | 0.08 (0.10) | 0.09 (0.09) | 0.09 (0.12) | 0.07 (0.10)

Table 2: Empirical type I errors at 5% level based on different tests with A = 5 for Gaus-
sian and non-Gaussian stationary data with innovations coming from a Gaussian random field
with Whittle covariance functions. Rejection rate without removing Nr (see (19)) are in the
parentheses.

| - | denotes the determinant of a matrix, Q(s1, S2) = 2(s1 — 32)/[2(%) + X(%2)] " (s1 — s2) and
X(2) =T(£)AL(%), where

X
p(3)= [ o] 1]
A 12(s/A) n(s/A) 0 3
with 71(s/)\) = log (sz/A + 0.75), 72(8/A) = (5./A\)? + (s,/A)?, and s = (s,,5,) (see Paciorek
and Schervish [2006] and Jun and Genton [2012] for the details on this process). Note that the

variance of this process is constant over the spatial random field and it is simply the correlation

structure that varies over space.
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(NS1) Temporally nonstationary but spatially stationary Gaussian random field: Z;(s) = 0.5Z;,_1(s)+
(1.3 4 sin (25£)) &(s), where {&;(s)} is defined in Section 8.2.1. We use p = 0.5, p =1

and A = 5.

(NS2) Temporally stationary but spatially nonstationary Gaussian random field: The spatio-
temporal process is defined with an AR(1) model Z;(s) = 0.5Z;_1(s) + n:(s). Following a
similar set-up as in Bandyopadhyay and Subba Rao [2016] we use A = 20. This process

has a constant variance over space and time.

(NS3) Both temporally and spatially nonstationary Gaussian random field: The spatio-temporal

process is defined using an AR(1) model with time-dependent innovations

27t
Z,(8) = 0.5Z,_1(s) + [ 1.3 +sin [ === ) ) n.(s).
400
For the simulations we use A = 20.

8.3.2 Discussion

The empirical powers based on Models NS1 - NS3 are given in Table 3-6.

First we consider Model NS1, which is temporarily nonstationary, but stationary over space.
The results of the general spatio-temporal test using the test set P = {(1,0), (1, 1),
(0,1),(=1,1)} x {1,2} and orthogonal estimates set P’ = {(1,0), (1,1),(0,1),(—=1,1)} x {4,5}
(described in Section 4) are given in Table 3. Before discussing the results we note that over the
test set P the Fourier transforms are near uncorrelated. However, the temporal nonstationarity
means that the orthogonal estimators ggﬁ(rl, o) and ég,h;H(ij; r1,79) for (r1,r2) € P’ do not
necessarily share the same variance. Furthermore, there is correlation between the terms. These
conflicting behaves (decorrelation of DFTs but inability to capture the true variance) helps
explain why the power in the overall test varies between 27%-80% in the case p = 0.5 and 21%
- 80% in the case p = 1 (excluding the non-variance adjusted tests). The results of the one-way
temporal stationary and one-way spatial stationary tests (described in Section 5) are given in
Table 4. The power in the one-way temporal tests are close to 100% for all the test statistics (as
we would expect since the process is temporally nonstationary) for both p = 0.5 and p = 1. The
power for the one-way spatial tests drops considerably (as expected because NS1 is spatially
stationary) for the average covariance test and variance adjusted average squared covariance
test. In the case of the variance adjusted average squared tests the proportion of rejection is
least in the case p = 0.5 and H = 10.

Next we consider Model NS2, which is temporarily stationary, but spatially nonstation-
ary. The results are reported in Table 5. In this case the general spatio-temporal test us-
ing the test set P = {(1,0),(1,1),(0,1),(—1,1)} x {1,2} and orthogonal estimates set P’ =
{(1,0),(1,1),(0,1),(—1,1)} x {4, 5} gives very little power. As we would expect, in the one-way
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test for temporal stationarity the proportion of rejections is close to the nominal level (with the
exception of the variance adjusted test average squared test with H = 20 when the proportion of
rejection is about 12%). However, the test does seem to have some power in the one-way test for
spatial stationarity. In the case that n = 500 all the tests (excluding the non-variance adjusted
tests) have power between 8-21%. This level of power is not high but it is higher than the case
n = 100. The overall low power is because the number of observations is relatively sparse on
the random field (n = 500 and A = 20). Therefore most of the observations are unlikely to be
highly correlated and thus contains very little information about the nonstationary structure
(recall the variance of the spatio-temporal process is constant). It is likely if a larger n were used
in the simulations, the power would increase (compare with the simulations in Bandyopadhyay
and Subba Rao [2016]).

Lastly, we consider Model NS3, which is both temporal and spatial nonstationarity. The
results are presented in Table 6. For the general spatio-temporal tests we get higher powers
than for Model NS1 across all the tests. The power increases to 100% for the one-way temporal
stationary test. For the one-way spatial stationarity tests the power is more than for the same
tests using model NS2.

We mention that for all the models (NS1-NS3) the power for the average squared covariance
test without variance adjustment is very high. However, we have to be cautious about inter-
preting the result of these tests as the simulations under the null of stationarity show that the
these test statistics are unable to keep the nominal level when the process is not Gaussian.

Comparing the rejection rates with and without the nugget term removed (the values outside
and insides the parentheses), we observe that for models NS1 and NS2 the rejection rates with
and without the nugget term are about the same. However, for NS3 the power is slightly more

after removing the nugget term.

Model NS1: Overall Power
p
0.5 1
n 100 500 100 500

T, ,p-12 | 0.73 (0.80) | 0.60 (0.59) | 0.76 (0.74) | 0.57 (0.49)
1gp-z | 0.74 (0.78) | 0.61 (0.59) | 0.80 (0.75) | 0.59 (0.51)
Ty 12y | 0.99 (0.99) | 0.99 (0.99) | 0.99 (1.00) | 0.97 (0.96)
H=20 M, 512, | 0.97 (0.99) | 0.99 (0.99) | 0.98 (0.98) | 0.93 (0.92)
Tz,gﬁ—l/zﬁ 0.44 (0.56) | 0.33 (0.27) | 0.45 (0.45) | 0.22 (0.21)
Mz_g‘g,,l/z_w 0.51 (0.64) | 0.47 (0.45) | 0.60 (0.57) | 0.34 (0.27)
Ty 912, | 1.00 (1.00) | 1.00 (0.99) | 0.99 (1.00) | 1.00 (1.00)
H=10 M, 12, | 0.98 (0.99) | 0.99 (0.98) | 0.99 (0.98) | 0.98 (0.97)
T, P12 0.53 (0.56) | 0.39 (0.37) | 0.55 (0.50) | 0.30 (0.27)
Mz.g,i/—'/zw 0.52 (0.56) | 0.46 (0.44) | 0.52 (0.48) | 0.33 (0.28)

Table 3: Overall empirical power at 5% level based on different tests with A = 5 for nonstationary
data generated from the model NS1 with innovations coming from a Gaussian random field
with exponential covariance functions. Rejection rate without removing N (see (19)) are in the
parentheses.
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Model NS1
Temporal Power Spatial Power
P P
0.5 1 0.5 1
n 100 500 100 500 100 500 100 500
T o2 | 097 (0.99) | 1.00 (1.00) | 0.97 (0.99) | 1.00 (1.00) | 0.01 (0.01) | 0.01 (0.01) | 0.04 (0.03) | 0.04 (0.04)
M,y 099 (1.00) | 1.00 (1.00) | 0.99 (0.99) | 1.00 (1.00) | 0.01 (0.01) | 0.02 (0.01) | 0.02 (0.02) | 0.03 (0.01)
Ty, -1z | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 0.99 (0.99) | 0.99 (0.99) | 1.00 (1.00) | 1.00 (1.00)
H=20 M2797Q71/2,1 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 0.99 (0.98) | 0.99 (0.99) | 1.00 (1.00) | 1.00 (1.00)
T, o2 | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 0.05 (0.04) | 0.10 (0.08) | 0.15 (0.14) | 0.28 (0.31)
M, g1z | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 0.15 (0.15) | 0.18 (0.16) | 0.23 (0.24) | 0.31 (0.32)
T,y p-12y | 100 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 0.99 (0.99) | 0.99 (0.99) | 1.00 (1.00) | 1.00 (1.00)
H=10 M, 12, | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 0.99 (0.99) | 0.99 (0.99) | 1.00 (1.00) | 1.00 (1.00)
g -1z | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 0.02 (0.02) | 0.06 (0.05) | 0.10 (0.11) | 0.26 (0.28)
90—z | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 0.06 (0.06) | 0.09 (0.07) | 0.14 (0.14) | 0.24 (0.26)

Table 4: One-way empirical powers at 5% level based on different tests with A\ = 5 for nonsta-
tionary data generated from the model NS1 with innovations coming from a Gaussian random
field with exponential covariance functions. Rejection rate without removing Ny (see (19)) are
in the parentheses.

Model NS2
Overall Power Temporal Power Spatial Power
n 100 500 100 500 100 500

T, o2 | 0.09 (0.11) | 0.11 (0.11) | 0.04 (0.05) | 0.05 (0.06) | 0.06 (0.07) | 0.17 (0.17)

M1 12 | 0.08 (0.08) | 0.10 (0.09) | 0.03 (0.03) | 0.05 (0.06) | 0.03 (0.02) | 0.15 (0.15)

ngv 12, | 0.04 (0.06) | 0.06 (0.06) | 0.04 (0.05) | 0.05 (0.06) | 0.24 (0.26) | 0.28 (0.31)

H=20 M, 12, | 0.07 (0.09) | 0.07 (0.07) | 0.08 (0.08) | 0.03 (0.04) | 0.12 (0.15) | 0.21 (0.25)
Ty ooz | 0.07 (0.06) | 0.05 (0.04) | 0.11 (0.12) | 0.12 (0.12) | 0.05 (0.06) | 0.18 (0.19)

M, 91 | 0.08 (0.06) | 0.08 (0.09) | 0.11 (0.12) | 0.13 (0.12) | 0.07 (0.10) | 0.21 (0.20)

T,, 012, | 0.15 (0.18) | 0.15 (0.15) | 0.06 (0.07) | 0.06 (0.07) | 0.38 (0.47) | 0.56 (0.59)

H=10 M, o172, | 0.12 (0.10) | 0.13 (0.15) | 0.05 (0.06) | 0.06 (0.06) | 0.32 (0.34) | 0.48 (0.50)
T, o125 | 0.08 (0.10) | 0.06 (0.05) | 0.05 (0.04) | 0.04 (0.04) | 0.01 (0.02) | 0.09 (0.10)

M, g1y | 013 (0.14) | 0.10 (0.10) | 0.06 (0.03) | 0.04 (0.05) | 0.01 (0.01) | 0.08 (0.09)

Table 5: Empirical powers at 5% level based on different tests with A = 20 for nonstationary
data generated from the model NS2. Rejection rate without removing Ny (see (19)) are in the
parentheses.

Model NS3
Overall Power Temporal Power Spatial Power
n 100 500 100 500 100 500

T, ,p-12 | 0.83(0.80) | 0.98 (0.92) | 0.92 (0.99) | 1.00 (1.00) | 0.11 (0.07) | 0.33 (0.19)

M, 92 | 092 (0.88) | 0.99 (0.97) | 0.95 (1.00) | 1.00 (1.00) | 0.18 (0.08) | 0.54 (0.25)

Ty o1z, | 0.99 (0.99) | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 0.99 (1.00) | 1.00 (1.00)

H=20 M, ,p-1/2, | 0.99 (0.98) | 1.00 (0.99) | 1.00 (1.00) | 1.00 (1.00) | 0.99 (1.00) | 1.00 (1.00)
T,, o125 | 0.65 (0.66) | 0.85 (0.77) | 1.00 (1.00) | 1.00 (1.00) | 0.34 (0.22) | 0.74 (0.50)

M, g1y | 082 (0.80) | 0.98 (0.87) | 1.00 (1.00) | 1.00 (1.00) | 0.52 (0.34) | 0.90 (0.69)

T, o1z, | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00)

H=10 M, o125 | 0.99 (0.99) | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00) | 1.00 (1.00)
Ty o125 | 0.65 (0.63) | 0.81 (0.77) | 1.00 (1.00) | 1.00 (1.00) | 0.13 (0.08) | 0.45 (0.35)

M, g1y | 0.79 (0.70) | 0.94 (0.84) | 1.00 (1.00) | 1.00 (1.00) | 0.32 (0.19) | 0.79 (0.58)

Table 6: Empirical powers at 5% level based on different tests with A = 20 for nonstationary
data generated from the model NS3. Rejection rate without removing Ny (see (19)) are in the
parentheses.
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A  Proofs

A.1 Proof of Lemma 3.1

To prove the result we start by expanding cov [J(Qg,, Wk, )s J (kg1 y Whgtro )] -

cov [J(le y Why )7 J<Qk1+1'1 ’ wk2+?"2)]

T—1 T—max(0,h)

1 4 1 .
=5 Z e~ ks T Z cov [y (R, ), Jern(Qeyry )47
=—(T-1) t=1—min(0,h)
= M + R, (49)

where M is the main term

t=1

T—1 T
1 Z , 1 .
M= % h=—(T-1) eilhw@ ? Z COV[Jt<Qk1)7 Jt+h(ﬂk1+7‘1)]€iltwr27

and R is the remainder

T-1 T

. 1 .
Ro= =3 e ™er 3 covl(@), Jen(ersr e
=0 t=T—h+1
-1 |h|

—ihw 1 —itwy
Fam D e E D o). osn( D e

——(T-1)

The expansions above are valid in the general case. Below we obtain expressions for M (the
main term) and bounds for R in the case that the spatio-temporal process is stationary and
nonstationary.

e Spatially stationary
By using the same proof used to prove Theorem 2.1(i), Bandyopadhyay and Subba Rao

[2016], and the rescaling devise over time, under spatial stationary we have, for r; # 0,

cov[ (2, )s Jern (g4 )]

N / o / Ko £ (s1)e' 1" ds dsy
[=A/2,0/2]¢ [—A/2—s1,—)/2]¢

N J/

O(42)
—iQ i s ph
+/ ‘ ZQTSQ/ per (s1)e" M1 dsydsy +O <—[Time:NS> ;
Jieaazap Darjaregd T e
O(Agﬁb)
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and for 7 = 0,

cov[Jy (R, ), Jrn (kg4 )]

Ctt+h . )\dnt t+h PhlTime=Ns
= (v —iv Q. )dv : ¢ (0 O| ——=
Al /[)\/2 A/24 Kh’f( o=ttty )dv + NiNitn Kh’f( )+ ( T ) 7

where, b = b(ry) is the number of zeros in 7y, ¢t pin = (MNern — Nesin)/MeNern, Neren =
{50510} N {8ern b | and Itime—ng denotes the indicator variable for temporal nonsta-
tionarity. Note that we use the notation [—A\/2—s;, —=\/2]¢ = [-A\/2—s11] X ... x [-A\/2—
s14). Substituting the above into the remainder R we see that |R| = O([T~!+\¢/n]I(r) =
0) + 5571 (r1 # 0)). Now we derive expression for M for the temporally stationary and

nonstationary separately.

(a) Temporally stationary (i.e., r), 1 (v) = rp(v)) First we look at the case r1 # 0. In
the case that r; # 0 and r # 0, we take the summand Zthl e~ "2 in M separate of kj, giv-
ing M = 0. Therefore, cov [J(Q,, Wy )s J(Qksy 171> Wyt )] = OA"EOT1) In the case
that 7, # 0 but r, = 0, we get M = O(A~=9), and thus cov [J(Qp,, Wi, ), J (kg g Whytrs )] =
O(A-().

Now we consider the case 7 = 0. In the case that 7y = 0 but 5 # 0, we use Assumption
3.1(ii), where ¢;n < ny < con, which implies that |c;1qp — 1] < ccl—gn and immediately gives
M = O(T7 '+ X/n) and cov [J (2, Wiy )5 J (ks Whytry)] = O(AN/n+T71). On the other
hand, when 7 = 0 and 7, = 0 we have M = f(Qu,,wr,) + O(T1 + X7t + X?/n), which
immediately leads us to cov [J (2, , Wi, )s Sk, Wk, )] = F( Qs Wiy ) FO(TLHALH N /).

(b) Temporally nonstationary Again it is immediately clear that when r; # 0 (19 € Z)
we have M = O (A~ which gives cov [J(Qu,, Wk, ), J (s 1, Whotry)] = O(AT170)
T-1). However, when r; = 0 (ry € Z) (and using Assumption 3.1(ii)) it is clear that

T-1 . >\d 1
e~ Whe — exp(—iv'Qy, dv+0( —),
T h=%1 Z X / [~A/2, A/21d w)expl ) n T

which gives the desired result.

Spatially nonstationary If the spatio-temporal process is spatially nonstationary, using
the same proof to prove Theorem 2.1(ii), Bandyopadhyay and Subba Rao [2016] and the

52



rescaling devise over time and space we have,

cov([Je(Qk, ), Jrn(Qy 49 )]

B Ct;:lrh /[ X/2,)/2]24 Ko & <U; ;) exp(—iv'Qy, ) exp(—is'Q,, )dvds
2,0/2

+ / e_m/
JI=2/2,0/21
+ / e 128
J=A/20/2)¢ /2, )\/2+s]d
(ph//\)

I ime=
—l—M/ Kt (O; f) exp(—is'Q,,)ds + O (M) .
Mlen Jioajzpze TN A T

Using the above result it is straightforward to show that R = O([1 + \¥/n|T~1).

Rh;%

(v; f) "1 dyds
[—A/2—s, ,\/z]d A

A ,
/

Ph/)‘)

Fop, L (v; ;) "1 duyds

(a) Temporally stationary (i.e., x), «(v,s) = p(v,s)). Since the process is spatially

—1tro

nonstationary, we consider 7y = 0 and r; # 0 together. In the case that ro # 0 ZtT:1 e
is separate of ry,, thus M = 0 and cov [J(Qg,, Wk, ), J(Qg,, wr,)] = O(T 7).

If ro = 0 we have,

T-1

1 4 1 s 1
M= _— e”wkz_/ K <'v; —> exp(—iv'Qy, ) exp(—is'Q,., )dvds+O (—) :
2 Z Ad )\/27)\/2](1 A ( 1) ( 1) A

m -
h=—(T-1)

which immediately leads to the desired result.

(b) Temporally nonstationary In this case using Assumption 3.1(ii) we have,

1 T—1 1 T
—ihwy, —itwr
Y ey
h=—(T-1) t=1

n

xct’Hh/ (v S)e (—iv' Qg, ) exp(—is'Q )dvds—l—O()\d 1>
Ryt XPp(—1 k XPp(—1 r N |
M Sz T AT 1 1 A

thus leading to the desired result.

A.2 Proof of results for stationary spatio-temporal processes

PROOF of Lemma 4.1 The proof of this lemma is identical to the proof of Lemma 3.1 in
Bandyopadhyay and Subba Rao [2016] and hence omitted. O
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To prove the remainder of the results in Section 4 we use the following notation

fn(Q2) = /Rd kn(8) exp(—i€Y's)ds,

Zexp (—ihw) / n(8) exp(—i€Y's)ds,

heZ

and
T hohs (21, 22, Q) = / Khy ho,hs (81, 82, S3) €xp(— (3 Q) + 8292 + 8393))d81d32d83
R3d

Note that in this section we do not prove any central limit theorems. However, we conjecture
that by combining Bandyopadhyay et al. [2015], which give a CLT for mixing spatial processes
and the CLT for quadratic forms of a time series (see, for example, Hsing and Wu [2004], Leucht
[2012], Lee and Subba Rao [2015]) asymptotic normality of spatio-temporal quadratic forms can
be proved.

Having established an expression for the mean of @,(-) under stationarity, the main focus
is obtaining expressions for the variance and covariance of @,(-) and the corresponding test

statistics. To do this we define the related quantity a,(-) such that

ag(wkz; T, TQ) = ag(wkg; Ty, 7’2) + NT7

where
1 <& 1 &
Ny — Wy —ITWEy 41y Q 5 Z Y ( ) —18;Qpy
T 9T € \ ki) 3975 +( J .
t,r=1 ki=—a

More precisely, we have,

g (Why3 T1,72)

1 a
- F Z g<Qk1)J(Qk17ka)J(riH‘pwk2+r2)

ki=—a
T a

1 . . 1
= _2 T Z eltwkg_ZkaQ"”l‘QF Z g(ﬂk1)Jt(Qk1)J‘F(Qk1+r1)

=1 ki=—a

a

T
1 ztw — T Wk 41 1
- — Z_ g S () o Z 01510r 5o Z(83,) 22 (83,)

ki=—a Ji,J2=1

185, Qp, —18,, Qg
J1 J2 +r
Xe 1 1T,
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where the second equation follows by expanding J(€2,,ws,). To understand the role Ny plays,
consider the expectation of Nr for the case ;1 = 0 and ro = 0; not a case included in the text,

but useful in understanding its role. Taking expectation of Ny (under stationarity) we have

a T

1 . Ngr
BINI = 535 3 () 3 expl—ilr — i)
k=—a t,7=1 T

)\d

Q

1 a
g(2)d2 x — exp—thQKOZO(—).
N Jorl—a/xa/A4 () QW% ( k) (0) n

In the case that we constrain the frequency grid {Q;k = (k1,...,kq), —a < k; < a} to be
bounded, i.e., a/A\ — ¢ < oo as a,\ — oo, then it is clear that E[Ny] = O(\4/n) = o(1).
Furthermore, using similar arguments it can be shown that the variance of Ny is asymptotically
negligible and Avar[a,(wg,; 71,7m2)] = Avar[a,(wk,;1,72)] + 0(1) when the frequency grid is
bounded. On the other hand, if the frequency grid is not bounded and a/\A — 0o as A — oo
then we can show that for 7, = 0 and r, = 0 we have E[Ny] = O(a?/n) and for general r;
and ry A\%var[Ny| = (a?!/n?). Therefore, if the frequency grid is not bounded, @, (wy,; r1,72) and
ag4(wrk,; T1,72) are not asymptotically equivalent. However, a,(wy,; 71, 72) does play an important
role in understanding the covariance of @,(wy,; 71, 72), and we come back to this later on.
Returning to @y(wg,;r1,72), we see from the definition of @y(-) that in order to obtain the

covariance of @,(-) we require the expansion

1 S —1i8;
Neov |:F Z Q(le) Z 5t17j1 5t27j2 Zt, (Sj1)Zt2 (Sj2)€w]lnk1 32 €M 4 )

ki=—a e o,
! s 1 18 —1i8;
F Z g<ﬂk3)n n Z 6t37j35t47j4zt4(8j3)2t4<8j4)€ g3ﬂk3 j4ﬂk3+'r3
ks=—a 8T st
=A+B+C (50)
where,
~ 1 - S 1 - N
A = N Z Q(Qm)g(ﬂkg)l_rl—n Z cov |:5t17jlztl<sj1)elsjlnkl75t37jIZt3<S‘j1)618]3Qk3]
ki,k3=—a i—1 Ty
o A
X Ccov [(51527]'2 Zt2 (Sj2>€7isj2 Qpy 4y , 5t4,j4 Zt4 (Sj4)€7isj4 Qk3+r3:|
~ 1 ‘ _ 1 - o
v F Z g(Q,ﬂ)g(ka)m Z cov [5t17jlzt1<sj1)€w“nkl>(5t4,j4Zt4(Sj4)€ 349’“3“’3]
k1k3=—a J=170 g1 #0n

JaFja
X Cov [5t2,j2 th (sj2 )e_i%ﬂkﬁrl ) 5t3,j1 Zt3 (Sj1 ) eiSjB s }

%)



~ 1 a - 1 . s
C = F Z g(le)g(Qk3)rrl—n Z cuim |:5t17j1 Ztl (Sjl)elsjlnkl , 5t2,jQZt2(sj2)€ 13‘729k1+7‘17
k1,ks=— =177 j1#j
R R

) N\, 185, Qe ) N\ ,185, L+
5t3,]12t3(831)6 73 375154,]42154(8]4)6 AT

Simplifications for these terms can be obtained by using the methods developed in Subba Rao

[2015a]. Using this we can show

y J—
(271_); /D |g(Q)|2ft3—t1 (Q)ft4—t2<ﬂ + er)dQ + Rl,t3—t1,t4—t27

1?4\:

~ [7'1:7' e —
B = (271_); / g(ﬂ)g(—ﬁ - Qr1)ft4—t1<ﬂ)ft3—t2(ﬂ + Qr)dQ + R2,t4—t17t3—t2

D 1
and,
~ [1'1:7’3 -
C= (27_(_)2(1 g(Ql)g(Q2)ft27t1,t3*t1,t4*t1 (Ql + Q”'17 Qs, =y — (2"‘1)(1(21dS22
D2
+R3,tg—t1,t3—t1,t4—t1 )
where,
|R1,t3—t1,t4—t2| - O(pt:),—tl pt4—t2€>\,a,n)7
|R2,t4*t17t3*t2‘ = O(pt4*t1 ptS*tzgk,a,n)a and

a\)?
R3,t2—t1,t3—t1,t4—t1 = O (th—tlptS—tlpM_tl |:€)\,a,n + (nQ) :|) .

We further observe that use of the expansions given in (50) to obtain an expression for
var[a,(wg; 71, 72)] can make the notations extremely cumbersome and difficult to follow. Proofs
which only involve DFTs can substantially reduce cumbersome notations. However, a DFT
based proof requires the frequency grid to be bounded, and as mentioned in the discussion at
the start of this section, @y(wy,;71,72) and a4(wk,; T1,72) are only asymptotically equivalent if
the frequency grid is bounded. Therefore to simplify notations, for the remainder of this section
we focus on the case that the frequency grid is bounded. However, we mention that exactly the
same bounds apply to the case when the frequency grid is unbounded.

We observe that in order to obtain an expression for Acov(a,(wk,; 71, 72), Ay(Wky; T3, 74)] (in

the case that the frequency grid is bounded) we require the expansion

AdCOV Z g(le)Jtl (Qk1)Jt2<Qk1+7’1)7 Z g(ﬂkg)Jt2(9k3)‘]t4(9k3+7‘3) = Av_l_ E + 57

ki=—a ks=—a
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where

a

- 1 -

A = F Z g(Qk1>g<Qk3)COV [‘]h (Qk1)7 Jt3<ﬂk3)] cov |:Jt2 (Qk1+’r‘1)7 Jt4<Qk3+7’3>i| )
k1,k3=—a

~ 1 a - - ___

B = Nd Z 982k, ) (i, )cov [‘]t1(ﬂk1)v Jt4<ﬂk3+7’3)} cov [Jtz(ﬂlﬂ-l—ﬁ)’ Jts(Ql%)} )
k1,ks=—a

~ 1 a -

¢ = Nd Z g(Qh)g(ka)Cllm [Jtl (le)? Jtz (Qk1+1‘1)’ Jts(ﬂks)v Jt4 (Qk3+7‘3):| :
k1,ks=—a

Now we obtain simplified expressions for Z, B and C.

e Ir =r
1= /D () s (VT (@ T )R + Ruy v (51)

Iy =r, —_
B = (27T)d / g(Q)g<_Q — Qr1>ft4—t1 (Q)ft3_t2 (Q + Q,,.)dﬂ + RQ,t4—t1,t3—t2, (52>

1

y f— o
¢ = (2;_)22 /D2 g(Ql)g(QQ>ft2—t1,t3—t1,t4—t1 (Ql + Q’f‘u Qs, =y — Q"‘l)dgldQQ

+R3 1ty t3—t1,ta—t1 -

(53)

Comparing the above with (50), when the frequency grid is unbounded, see that the expressions

are identical. We use the above to prove Lemma 4.2.

PROOF of Lemma 4.2 By decomposing the covariance we have
)\dCOV [/dg(ka; T1, rg),ag(wk4; T3, 7'4)] = IkQ,k'4 + [[kg,k4 + II[kQ,k47

where,

a

1 -
Ikz,k4 = F Z g<Qk1)g(Qk3)COV [J<Qk1 ) wk2)7 J(kaw/ﬂ)]
k1,ks=—a

X cov |:J(Qk1+1“17wk2+7"2)7 J(Qk3+7“37 Wk4+7"4)i| )

a

1 -
[Ik277€4 = g(ﬂkl)g(ﬂk:s)cov J(anka)? J(Qk3+r3> wk4+r4)
)\d

k1,k3=—a

Xcov |:J(Qk:1+7‘1 y wk2+1“2>7 J(”kga wk4):| )
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and

a

1 [
gy, = bt Z 9(2,)9(Qi,)
k1 ks——a

Xxcum [J(Qlﬂ ) wk2)7 ‘](Qk1+7'1 ) wk2+r2>7 J(ka wk4)7 J(Qk3+7‘37 wk‘4+7’4)] :

By using (51)-(52) we obtain expressions for the Iy, x,, [y, x, and 11y, ,. We first consider
I, k,- Using (51) we have,

a

1 -
[k2,k4 = ﬁ Z g(ﬂkl)g(ﬂka)cov [J(le,ka),J(ng,wk4)]

k1,ks=—a

X cov |:J(Qk1+7‘1 ) wk2+T2)7 J(Qk3+7‘37 wk4+7‘4>

= Tiy kot + Iiy koo R (54)

where,

S
Ty kot = W—JTQ Z /|9 ) framts () framta (4 Q)

t1,t2,t3,t4=1
% eitlwkg 774t2wk2+r2 7zt3wk3 +zt4wk4+r4 dQ’

T
1 ) ) . .
—itow, —it3Wg, +itgw
It ko R § R, 1 Who —12Why vy —1t3Weg +itaWhy 41y
1,52, d+2772 t3—t1ta—t2 :
(27T) r t1,t2,t3,64=1

We first find an expression for Iy, i, m

T—1 T—|s1]
Ikl’kz’M - 27:1d+23T2 / |g |2 Z fsl(Q)e_“WIm Z elt1(wk4—wk2) «
s1=—(T-1) t1=1

T-1 T—|sa|
Z meis2wk4+’“2 Z eitQ(wk2+r2—wk4+r4) dQ

so=—(T-1) to—1

IT — ! = r =r
- e k4 — / |g | f(ﬂ sz)f(Q + Q’f’nwkz-‘rm)dﬂ + O 3 +£)\an
(2m) e

I"'l T‘SIkQ k4 T2 7“4/ 7“1 Iri=ry
= Q Q+Q, ., 1y ) A2 an | -
(271') ’g | f( ka)f( + 13 Who+ )d + O T + g)\

It is straightforward to show that Iy, x, r = O({x4.n). Therefore we have

I'Pl = [2 To=T ri=r
Ik17k2 = 3(];71-)]{54 - / |g | f(Q wk2>f(ﬂ+9r1awk2+r2)dﬂ+0( T 2 +€)\an> .
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Using the same arguments and (52)

a T
1 —_— . . . .
[[k27k4 = F Z g(Qk1>g(Qk2> Z eXp<Zt1wk2 + Zt4wk4+7‘4 - Zt2wk2+r2 - Zt3wk4)

k1,ks=—a t1,...,ta=1

cov [Jtl(ﬂkl), Jt4<ﬂk3+r3>i| cov [Jt2(9k1+r1), Jis (ka)]

T—1 T—|81\
-['r =7 _— e - y .
- (271')1Cl—+231—Q/D g(Q)g(_Q_Q"'l) Z fsl(Q)e 1%k Z etl( kg TWho Fry)
" s1=—(T-1) t1=1
-1 T—|so|
I S = ] FL W
sg=—(T—-1) tam1
I”' =7 I =T—ko—1r Irr = -
= k4(;71')k; o /D g(ﬂ>g(_9 B Qm)f(ﬂa _wk2)f(_ﬂ — Qr1awk2+r2)dﬂ
™1
o (o (55)
T amn | -

Using (53) (see the proof of Theorem 4.1, Jentsch and Subba Rao [2015] for details) we have

I, 1,
T
= —[m:m Q)g(2 Q4+ Q. , 2y, —Q —
- (27T)2dT2 g( 1)9( 2) ft2—t17t3_t11t4_t1( 1+ 82, 800, —8iy — 1‘2)
D2 t1,t2,t3,64=1
Xeitlka —itgwk2+r2 —it3wk4+’it4wk4+r4 dQldQQ
1 T
it Wy, —ttow —it3wg, +itaw
+(27T)—dT2 § : R3,t2—t1,t3—t1,t4—t16 kg TR kg Ay THANR, TRk s
t1,t2,t3,64=1
T-1

I._

J— 1=73 _—

= W g(Ql>g(92) Z fs1782,53(91 + Q. , Qy, —Qs — Qm)

2
P 51,52,52=—(T—1)
T—| max(s;,0)|

X @L51Wkgrg T182Why ~183 Wk try Z oWk ~Why 4ry —wky +wk4+r4)dﬂ1d92

t=| min(s;,0)|+1
1 T-1
- 181 Who 1o T152WE, —183WE , +

i (2m)2dT Z R3.5),50,55€ 2T 4 atrq

51,52,52=—(T—1)

T'—| max(s;,0)|

X eit(ka —Who 41y ~Why TWky 41y ) .

t=| min(s;,0)|+1
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By changing the limits of the sum we have

I, 1,
I T-1
- —(2;1);;}2 /732 9(21)g(€22) Z Forisnss (21 + Qo Qo =y — Q)

81,52,82:—(T—1)

T
) . . ) 1
W @ 151 Wk +rg ~182Wiey TIS3WEy try E 67't(wk2_Wk2+r2_Wk4+wk4+r4)d91d92 +0 (EA,a,n + e
t=1

[7“1:7” Ir = _—
- (27:)—2d2T € /D 9()9(Q) f (R + Dy, iy + Wy R,y =0 — Qs —w0py — i)

g a,n Ir:'r Ir:r
dQldQTI—O(A” 4 =T ) (56)

T K
The above results imply

Aleov[ay (why: 71, 72), Gg(wWhy; T3, 7))

I’r’1:'l°3[1”2:r4 —_—
- (2 d (]k2k4 / g(Q)g(Q)f(Q + er7wk2+r2>f(ﬂa sz)dﬂ
) >

+]1</’4:T—/<32—7“2 / g(ﬂ)g(—ﬂ - Qr1)f(ﬂ7 _sz)f(_Q - Qr1awk2+rz)d9)
Dr

1
10 (a1,

By using the well known identities

cov(RA,RB) = %(%COV(A, B) + Reov(A, B))
cov(SA,SB) = %(?R(:OV(A, B) — Reov(A, B)),
cov(RA, 3B) — _71(%cov(A, B) — Scov(A, B)), (57)

we immediately obtain (20).

Asymptotic normality is proved using sufficient mixing assumptions. O

A.2.1 PROQOF of results in Section 7.1 (used in Section 4.2)
We start by analyzing the sampling properties of the first test statistic /Alg,h(frl, To).
PROOF of Lemma 7.1 We first note that

MNT -
S-cov [Ag,h(rl, ro), Ay p(rgora)| = I+ 11+ I11,
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where,

9 T/2 9 T/2 9 T/2
I = = > I I = > Iy, 111 = > Iy,
ko,ka=1 ko,ka=1 ko,ka=1

and Iy, ky, L1g, 5, and 111y, 1, are defined in the proof of Lemma 4.2. We now obtain expressions

for these terms. By substituting the expression for Iy, x, in (54) into I we have

T
21, —
I = (27611#:;371 Z /|g(ﬂ)|2ft3t1(ﬂ>ft4t2(Q+Qr)dQ
t1,t2,t3,t4=1 D

o

x e Htawry Titawry (ﬁ Z h(ka)h(u_}k4)eiwkg(t1—t2)€_iwk4(t3—t4))
ko ka=1
9 - o .
+ﬁ Z h(wg, ) A (W, ) Z Ryt gyt €2 T 2Ry T Ay
ko,ka=1 t1,t2,t3,t4=1
= Iy +1Ig.

We first obtain a neat expression for the leading term I,;. Using that the function & : [0, 7] — R

is piecewise Lipschitz continuous and the integral approximation of the Riemann sum, we have

T/2
> h(wp)e™ = h;+O(T™)

k=1

2
T

where hj = - [ h(w)edw and the Fourier coefficients decay at the rate |h;| < C|j|~*1(j # 0).

This approximation gives

T/2
4 — . :
)T > hlwr,)h(wr,) expliws, (t — t2)) exp(—iw, (s — ta))
ko Jea=1

L O<ht1—t2T_1 + hts—t4T_1 + T_2)'
Substituting this into 1), and using that |h;| < C|j|~1(j # 0) gives

T
211' =r T —itowr, +itgws 2
IM = (271.)#23:17 Z h’tl*t2ht3*t4e 2 4/D|g<Q)| ftS*tl(Q)fM*tz(Q—i_QT)dQ

t1,t2,t3,ta=1

+O0((log T)T™1).

By making the following change of variables, s; = t3 — 1, so = t4 — ty and s3 = t; — 5 (so
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ty —ty = 51 — So + S3) we have

I’I‘ r 1520,) 7120.) — W
]M = —— Z h53h31 —so+s3€ e talers T4)/’g |f81( )fsz(Q+QTl)dQ

(27T)d+2 51,52,83,t2
+O((logT)T o)
Y (ST — ioau -
- ol > b€ T2/ 1g()12fs, () Fo (9 F €2, )d2

$1,82,53

+0((log T)T™1),

where in the last term we have used that 71321 e7#2(@n=wn) = [(r; = ry). Next we use that

Dy Psslisst(s1—s0) = = [ 1(w)]? exp(—iw(s1 — s2))dw to give

IT‘1 r3dlro=ry —iw(s1—82) Lisaw T (O .LO
By = e [P Y e e [ @R, @ F @ 0

51,52

+O0((log T)T ™)

Loymrgdry=ry [
= st [ ) Pl (@R () T T Ry o), o
wen o Jo

+O0((log T)T 1)

By using a similar method we can show that |Ig| = O({),,). Altogether (using that f is real)

we get

gt [0 )Pl R A0/ (04 Ry + )2

+O((log T)T* +lxan)
- ]1‘17‘3IT2T4/ |h(w)|2‘/9(w;ﬂ7‘17w7’2)dw'
0

Using similar arguments we can show that

]lerr
I] B (277-)—d+;7—‘ /7; Q Q >ft4 tl( )ft3—t2(ﬂ +Q7-)dﬂ
t1,t2,t3,t4=1 1
1 T/2
A (ﬁ D7 Al hlwn et e “M)) + Olan).
ko, kq=1
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We set s1 = tg —t1, Sg =t3 —ta, S3 =1t — to (and t3 — t4 = $9 — 51 — $3) to give

I = 27:_‘1d‘:;T Z hsghsz 51—83 /D g(Q)g(—Q — Qr)fsl (Q>f52 (Q —+ Qr)dﬂ
51,52,83,12 ™

xitantilortosttalon 1 O(0y ., + (log T)T ™).

By changing the limits of the sum over t, we have

I = 2;1dIST Z Py Pisy—s1—s3 / g()g(—Q — Q) [, (Q) fo, (2 + ,.)d2
51,52,53 1
T
Xei(s1+83)wr4 Z eit2(wr1+wr2) —f-O(é)\’am + (IOg T)T—l) — O(g)\%n + (10g T)T_l),
to=1
7”1:\T,—7“2

where the last line follows from the fact that r; and r5 are constrained such that 0 < r; < 1ry <

T /2. The following expression for 11 follows immediately from (56).

I = Trirslr, m/ / / (€21)9(22)h(wr)h(w2)
w2(2m)? D2
Xf4<ﬂl + Qm,wl + Wrg s QQ,C{)Q, QQ er, —Wy — wm)dﬂldﬂgdwldwg

+O0((log TYT ™ + Uy an)-

This gives us

T ~ -~
Tcov [Agvh(m, 72), Agn(Ts, 7”4)}

1 K0 1 ™ ™
A A e T ey A RN

xh(wl)h(wz)f4(91 + Qn,wl + Wrg s QQ, wa, —Qz — Qm, —Wy — OJTQ)dQldQdeldWQ)

FO((10g T)T ™" + £r.0).

Note that 1/[(27)%n?] = 4/(2m)??*? gives the fourth order cumulant term in (42).
By using the expressions for I, I1 and I1] and (57), we obtain (42).
By using mixing-type arguments the CLT can be proved. ([l

A.2.2 Proof of results in Section 7.1 (used in Section 4.3)

PROOF of Lemma 7.2 equation (43) Expanding cov [By y.i (wj, 1 71, 72), By htr (Wjprr; 73, 74)]
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gives

)\dHCOV [Bgﬁ;H(wle; 1, ?"2), Bg,h;H((JJjQH; T3, 7“4)] =Ig+11g+ [[IH,

where
H
]H - ﬁ E 31H+k27J2H+k247
ko, ka=
H
1
Iy = — E IT B ko jo Hev ks s
H
ko ka=1
H
IIIH == E g le+k2,j2H+k47

ko k4

and Iy, i, L1k, 1, and I11y, ;, are defined in the proof of Lemma 4.2. We now find expressions
for these terms, first focusing on the case j; = jo = j. By using (55) we have,

Iy = Ium+Inr,
where
i = e S O o Q)T 0T R
H,M - (27T)d+2T2 g t3—t1 ta—t2
t1,t2,t3,t4 1
1 - . .
X (ﬁ Z h(w;m + wiy ) h(wjg + wm)62(ij+wk2)(“_t”e_z(“’jHJr“”%)(t?’_t“))
ko,kgs=1
1 -
IH,R = T2FH Z h(ij+k2)h<ij+k4)

ko,ks=1
R @ 1W i H kg ~H2W5 H kg rg —H3W) H iy TAW H 4y try
1t3—t1,ta—t2 :

t1,t2,t3,ta=1

We first bound the inner sum in Iy ). Using the approximation of the Riemann sum by an
integral we have,

H

1 zsw W(H—l)H 'st —1
=5 R e = dw+ O(H™) = hon(wn) + O(H™),
k=1

(58)
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Applying the above to the following product gives

H
1 SEE—— .
_2 Z ij + W,y h(ij + wk4)el(ij+wk2)(tl—t2)€—1(ij+wk4)(t3—t4)
2,ka=
= htl—t2,H(ij)ht3—t4,H(ij) + O(htl—tzH(ij)H_l + hts—t47H(ij)H_1 + H_Q)‘
Substituting the above into Iy ys, using that

H
(2m)d+2T

/Wg V2 oyt () o (€2 F €2,)d2 = O(H)

t1,t2,t3,t4=1
and the same arguments used to bound [, in the proof of Lemma 7.1 we have,

S S A 2mW+1)H

1 — TTTsTresmaz R Rla(Q) 12 (0 QLo Vi
won = ot [ [ RIS, (@ + Bt i

+O(H ' + (logT)T1).

Using the same argument we can show that Iy g = O({),.,), which gives altogether

-['r r3dro=r Wi+ H
m—-ﬁg%%ﬁ—LH /Wh P l9(Q)P F(2,0)f (R + Qe+ wy, ) AR

+O(H ™'+ (logT)T ™! + Uy am)-

Using the same methods, we can show that [Ty = O(H '+ (log T)T '+ 5 .) (since < rg,ry <
T/2). Finally to bound /1y we substitute (56) into [1Iy to give

Iy = Inmmleon (1)
H (2m)2TH Z /D 1)
f(Qh ij-‘er) _Ql - Q'Pla _ij+k2+T‘27 _QQa _ij+k4)dﬂldQQ

Hg)\ﬂ’n H[r1:7'3]1”2=7”4
+0 ( T + T2

By using (58) we have

7‘1 Tlyi—rydyy=rs r2 . WE+)H WG+ H
Hln = —Fompie )h(wi)h(ws)
Xf4(ﬂl + Q'I’17 927 wa, _92 7‘17 —W2 WTQ)dgldQdeldWQ

+O0((log T)T ™ + by an + H).

We observe that 11y = O(H/T). Thus by using (57) we obtain (43) and a similar expression
for the imaginary parts. U
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PROOF of Lemma 7.2 equation (44) The proof of (44) follows immediately from (42). O

Finally we consider the sampling properties of ﬁgyh,v; g(ry,m).
PROOF of Lemma 7.3. To prove (45) we expand the expectation squared in terms of

covariance and expectations to give

EN'Dypam(r1,79)] =1+ I1

where
oH (T/2H)-1
I = ﬁ Z Var[\/H_)\ngJL;H(leH; 1, 7'2)]7 and
j=0
9O (T/2H)—-1 ,
I = 5 > ‘E[\/WBQ,,“H(%H; T, 7))
j=0
Using (43) we have
IR e ( VHNIRB, 1 '
T =0 QU(wle) g,h;H W H 1 9

—|—VaI‘[V H)\dSBg’h;H(wle; T, 7’2)]) + O(gk,a,n)

T/(2H)—1
2H 1 1
= —W, Wy ;Q,,.,wr +O(€ an+_>
T JZO U(wle) g,h( JH 1 2) Aa, H
T Won(w; Qp,wyy) 1 H
= dw+ O | lyan
v(w) * Nan T H 7 T
1 H
- Eghv<9r1’wr2)+0(£)\an+H+T)

Next we consider the second term 7. First considering the expectation we note that

vz A
EVNHBy p.i(wj 371, 72)]

Zh wir k) Blag (wjmk; 71, 72))-

By using Lemma 4.1 we obtain bounds on E[a,(w;m1x; 71, 72)], however, these rely on the number

of zeros in r; and whether 75 is zero or not. More precisely,

Nz ~ X2HY2 4D (log A + log [my))
NG kz:h(ij+k)E[ag(WjH+k§7'177"2)] = O( Tlry—ry#0 \d—b :
=1
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Therefore,

o (AdH[H;L’{ <1ogA+1og|mj|>P> _ D)

(T[T‘277”4750 )\dfb)Q

This proves (45).
To prove (46) we expand the covariance in terms of products cumulants to give

T
77 COV P\ Dg h,v;H(”‘l,T2), )\dDg,h,u;H(”‘S,M)]

2M
oxzpy T2~ 1 )
=7 > |cov[By i (w571, 72), By (Wipm; 71, 12)]|
j1,j2=0 U(wﬁH)U(ijH)

2

+ ‘COV[Bg,h;H(leH; T1,73), Bg,h;H<wj2H; r1,72)]

+cum [Bg,h;H(leH; 1, 7“2), Bg,h;H(wle; 1, 7‘2), Bg,h;H<wj2H; 1, 7"2)7 Bg,h;H(Wj2H§ 1, 7”2)]

+E[Bg,h;H(wj1H; 1, rg)]cum [Bg,h;H(wle; 1, 7”2)7 Bg,h;H(ngH; r1, 7“2), Bg,h;H(Wj2H§ 1, 7“2)}

+ similar terms involving the product of third and first order cumulants).

By using that

a

1 - -
W Z g(ﬂkl)g<ﬂk3>g(9k5)cum |:Jt1 (Q’ﬂ)‘]tz (Qkﬁ-ﬁ)? Jts(ﬂks)‘]m (Qk3+7‘3>7

k1,k3,ks=—a

Jt5 (ka ) JtG (Qk5+’f‘5 :| = Z H Pti—t; log)\gd ) (59)

B3 (t t)EBg

and

a

1 -
W Z g<Qk1)g(ﬂks)g(ﬂk5>g(ﬂk7)cum |:‘]t1 (le)Jt2<Qk1+"'l)7 Jts (QkS)Jt4<Qk3+7‘3>7

k1,k3,ks5,k7=—a

log
Jts(ﬂks)Jtﬁ(Qk5+T1)vJt7<Qk3)Jt8(Qk7+T3 :| = Z H Pti—t; — 30 \3d ) ) (60)
By (t;,t;)€Bs

where B3 and B, denotes the set of all pairwise indecomposable partitions of the sets {1, 2,3} x
{4,5,6} and {1,2,3,4} x {5,4,6,7} (for example, it contains the element (1,4), (3, 6)
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,(5,8),(2,7)) respectively, we can show that

log™(a) )

)\3d/2cum |:ag (wkga T, TQ), ag (wkga T, TQ), ag (wk4; T, TQ)] — O (W

)\QdCum |:Clg(a}k;2; T, 7"2), ag(wk‘z; T, TQ), ag(wk‘4; T, TQ), ag(wk‘4; T, r?)i| — O (

From this we expect (by using the methods detailed in the proof of Lemma B.5, Eichler [2008]),

though a formal proof is not given, that the terms involving cumulants of order three and above

2
are asymptotically negligible. Moreover that ‘COV[ngh;H(leH;Tl,TQ),Bg7h;H(w]'2H;T1,’f’2)]‘ is

asymptotically negligible for j; # jo. Using this we have

T
a7 [N Dy psr (11,72), XDy i (73,74

oaxp TR 1 ,
= T ‘COV[B%MH(wle; rlvr?)? Bg»h;H(whH;rlar?)” .
igeeo V(WiH)v(Win)

Substituting (43) into the above gives (46). O
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