
Supplementary material

The supplementary material contains:

• The asymptotic ‘finite sample’ approximations of the distribution of the test statistics.

• The auxiliary results which are used to define the tests in Sections 4 and 5.

• The simulations.

• The proof of the results.

6 Asymptotic ‘finite sample’ approximations of the dis-

tribution of the test statistics under the null

In this section we use the results in Section 4.4 to obtain finite sample asymptotic approximations

to the distribution of the test statistics T
1,g,bV �1/2(P ,P 0), T

2,g,bV �1/2(P ,P 0) and M
2,g,bV �1/2(P ,P 0)

under the null of stationarity.

Let {ZR,j(r1, r2), ZI,j(r1, r2); j = 1, . . . , T/2} and {Zj,k; j = 1, . . . , 2|P 0|, k = 1, . . . , T/2}
denote iid standard Gaussian random variables (we use a double index because it simplifies

some of the notations later on). We recall from the definition of bVg(!k;P 0) in (29) that it

is composed of (2M + 1)-local average of <bag(·) and =bag(·), each term being asymptotically

normal. Therefore we replace all the <bag(·) and =bag(·) in the definition of bVg(!k;P 0) with

standard normal distributions to give
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Zj,k+i is the local average.

Noting that the test statistic is in terms of �dT
2

| bAg,bV �1/2(r
1

, r
2

)|2, we replace the real and
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imaginary parts of bag(!k; r1, r2)/
q

bVg(!k;P 0) with the above to give
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,

for other (r
1

, r
2

), we use independent {Zk,R(r1, r2), Zk,I(r1, r2)} but the same {Zj,k}. We also

recall that we estimate the variance Vg,V �1/2 , therefore we approximate its distribution with a

weighted chi-squared with (2|P 0| � 1) degrees of freedom. Since the orthogonal sample which

was used to estimate it contained 2|P 0| terms

bVg,bV �1/2

Vg,V �1/2

⇠ 1

2|P 0|� 1
�2

2|P 0|�1

.

Therefore, based on the above, the following distribution is used

T
1,g,bV �1/2(P ,P 0) ⇠ 1
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X

(r1,r2)2S1
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to approximate the ‘asymptotic finite sample properties’ of T
1,g,bV �1/2(P ,P 0), under the null. Us-

ing the same method we can obtain the ‘asymptotic finite sample properties’ forM
1,g,bV �1/2(P ,P 0).

Next we consider the local average DFTs, bBg,bV �1/2(!jH ; r1, r2), bDg,bV �1/2,cW ;H(r1, r2) and
bDg,bV �1/2,1;H(r1, r2), which lead to the test statistics T

2,g,bV �1/2,cW and T
2,g,bV �1/2,1. Using the

arguments given above we have,
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Using the above, we estimate the distribution of bDg,bV �1/2,1;H(r1, r2) with

H�d
bDg,bV �1/2,1;H(r1, r2) ⇠ 2H

T

T/2H
X

j=1

YjH(r1, r2).
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This gives us the ‘asymptotic finite sample’ distributions ofT
2,g,bV �1/2,1(P ,P 0) andM

2,g,bV �1/2,1(P ,P 0).

In order to derive the sampling properties of T
2,g,bV �1/2,cW (P ,P 0) and M

2,g,bV �1/2,cW (P ,P 0), we

recall that bDg,bV �1/2,cW ;H(r1, r2) involves
cWg,bV �1/2(!jk;P 0) and we approximate this distribution

by independent chi-squares { 1

2|P 0|�1

�2

2|P 0|�1,k}
T/2H
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. This gives
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Using this we can obtain the distributions of T
2,g,bV �1/2,cW (P ,P 0) and M

2,g,bV �1/2,cW (P ,P 0). Note

that the same { 1

2|P 0|�1

�2

2|P 0|�1,k}
T/2H
k=1

is used for all { bDg,bV �1/2,cW ;H(r1, r2); (r1, r2) 2 P}.
The ‘asymptotic finite sample’ distribution derived above are used in all the simulations

below.

7 Auxiliary Results

7.1 Results in the case of stationarity

We first consider the sampling properties of bAg,h(r1, r2), which is used to define the test statistics

T
1,g,bV �1/2(P ,P 0) and M

1,g,bV �1/2(P ,P 0).

Lemma 7.1 Suppose Assumptions 3.1 and 4.1 hold, 0  r
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and
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Let {(rj, rj); 1  j  m} be a collection of integer vectors constrained such that 0  rj  T/2�1

and rj1 6= �rj2. Then under stationarity of {Zt(s)} and su�cient mixing conditions we have,

r
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We note that when kr
1

k
1

<< � and |r
2

| << T that the variances above approximate to

Vg,h(⌦r1 ,!r2) = Vg,h(0, 0) +O
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We now consider the sampling properties of bBg,h;H(r1, r2) and bDg,h,v;H(r1, r2), which are used

to define the test statistics T
2,g,bV �1/2,W (P ,P 0) and M

2,g,bV �1/2,W (P ,P 0). We start by studying
bBg,h;H(r1, r2).
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Exactly the same result holds for �dHcov
h

= bBg,h;H(!jH ; r1, r2),= bBg,h;H(!jH ; r3, r4)
i

, where

2Wg,h(!jH ;⌦r1 ,!r2)

=
T

H⇡

Z !(j+1)H

!jH

|h(!)|2Vg(!;⌦r1 ,!r2)d! +
T

H(2⇡)2d+2

Z !(j+1)H

!jH

Z !(j+1)H

!jH

Z

D2

g(⌦
1

)g(⌦
2

)

⇥h(!
1

)h(!
2

)f
4

(⌦
1

+⌦r1 ,!1

+ !r2 ,⌦2

,!
2

,�⌦
2

�⌦r1 ,�!
2

� !r2)d⌦1

d⌦
2

d!
1

d!
2

,

noting that the first (covariance) term in Wg,h = O(1), whereas the second term of Wg,h which is

the fourth order cumulant term is of order O(H/T ) since the cumulant term involves a double

integral which is of order O((H/T )2). On the other hand, if (r
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2

), (r
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) 6= 0, then (with 0 
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where the same holds for �dHcov
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where Wg,h(!) = Wg,h(!; 0, 0).

In the following lemma we consider the sampling properties of bDg,h,v;H(r1, r2). Note that

we consider general functions v, whereas in Section 4.3 we set v to be the variance of Wg,h(!),

which means the mean of bD is asymptotically pivotal.

Lemma 7.3 Suppose the assumptions in Lemma 7.2 hold and h : [0, ⇡] ! R is a Lipschitz

continuous function. Then we have
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where Ug,h,v = Ug,h,v(0, 0) and Eg,h,v = Eg,h,v(0, 0).
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7.2 Results in the case of nonstationarity

We first generalize (14) from covariances to fourth order cumulants. We assume there exists a

function  such that
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Using the above, we define the location and time dependent fourth order spectral density as
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In order to obtain the expressions below we start by generalizing the covariance result in (16)

to fourth order cumulants. By using Lee and Subba Rao [2015] and similar methods to those

used in Bandyopadhyay and Subba Rao [2016] it can be shown that
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and Fu,4 is defined in (48).

Lemma 7.4 Suppose the assumptions in Assumptions 3.1 and 4.1 (generalized to the nonsta-
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tionary set-up) and (47) are satisfied. Then we have,
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We also have,
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8 Simulations

8.1 Set-up

We now assess the finite sample performances of the test statistics described above through

simulations. In all cases we consider mean zero spatio-temporal processes, where T = 200

and at each time point we observe n = 100 or 500 locations (the locations are drawn from a

uniform distribution defined on [��/2,�/2]2 and we use the same set of locations at each time

point). All tests are done at the 5% level and all results are based on 300 replications. Further,
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we investigate the performances of the tests when the coe�cients bag(!k; r1, r2), as defined in

Section 4.1, are being calculated while both removing and keeping the ‘nugget e↵ect’ NT (in

Tables 1-6 the rejection rates for the test statistics without removing NT are reported in the

parentheses). All simulations are done for spatial dimension d = 2.

Next, we briefly discuss the implementation issues.

1. Choice of set P and P 0: All test statistics depend on the choice of P and P 0. In all simu-

lations described in this section we use P = {(1, 0), (1, 1), (0, 1), (�1, 1)}⇥{1, 2} and P 0
=

{(1, 0), (1, 1), (0, 1), (�1, 1)}⇥{4, 5} to calculate empirical type I errors and overall powers.

Further, to test for stationarity over space, we take P = {(1, 0), (1, 1), (0, 1), (�1, 1)}⇥{0}
and P 0 = {(2, 0), (2, 1), (2, 2), (1, 2), (0, 2), (�1, 2),

(�2, 2), (�2, 1)}⇥ {0} and to test for stationarity over time, we take P = {(0, 0)}⇥ {1, 2}
and P 0 = {(0, 0)}⇥ {4, 5}.

2. Choice of g(·) : Based on the discussion in Remark 2.1 we use the weight function

g(⌦) =
PL

j=1

eiv
0
j⌦. The choice of vj’s should depend on the density of the sampling

region. Following the same rationale as described in Bandyopadhyay and Subba Rao

[2016], in all simulations we define the v grid as V = {vj = (vj1, vj2)0 2 Rd : vjk =

�s,�s/2, 0, s/2, s, for k = 1, 2} such that vj + vj0 6= 0 for vj,vj0 2 V, where s = �/n1/d

is the ‘average spacing’ between the observations on each axis. We should mention that if

the support of the empirical covariance of the data appears far greater than s = �/n1/d,

then using a wider v grid is appropriate. If changes in the spatial covariance function

happen mainly at lags much smaller than s = �/n1/d, then data is not available to detect

changes in the spatial covariance structure.

3. Choice of frequency grid : In all simulations we use a =
p
n in the definition of bag(!k; r1, r2).

4. Choice of H in the definition of T
2

and M
2

: For all simulations we use H = 10 and

H = 20.

5. Choice of M to calculate the local averages : In order to estimate Vg(!k) we use the esti-

mator bVg(!k;P 0) (defined in (29)) with M = 2 (thus taking a local average of 5).

To obtain the critical values of the tests we use the asymptotic ‘finite sample’ approxima-

tions of the distributions of the test statistics as described in Section 4.4. For ease of discus-

sion below we refer to (i) T
1,g,bV �1/2 and M

1,g,bV �1/2 as the average covariance test statistics (ii)

T
2,g,bV �1/2,1 and M

2,g,bV �1/2,1 as the average squared covariance test statistics and (iii) T
2,g,bV �1/2,cW

and M
2,g,bV �1/2,cW as the variance adjusted average squared covariance test statistics.
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8.2 Simulations under the null

8.2.1 Models

In order to define the spatio-temporal models, we start by defining the ‘innovations’ process.

Let {"t(s); s 2 R2, t 2 Z} denote a spatio-temporal stationary Gaussian random field which

is independent over time with spatial exponential covariance cov["t(s1), "t(s2)] = exp(�ks
1

�
s
2

k
2

/⇢), where ⇢ is the ‘range parameter’. We do all the simulations under the null with

⇢ = 0.5, ⇢ = 1 and � = 5 (in the case that ⇢ = 1 the range of dependence for the innovations

is 20%, whereas for ⇢ = 0.5 the range reduces to 10%; see Figure 1). We mention that the

decorrelation property of Fourier Transforms, given in Lemma 3.1 implicitly depends on the

range of dependence with respect to �. If the range of dependence is too large with respect

to the observed random field then the degree of correlation in the Fourier transforms will be

non-negligible (leading to false rejection of the null).

(S1) Spatially and temporally stationary Gaussian random field : We define a spatio-temporal

model with the temporal AR(1) structure Zt(s) = 0.5Zt�1

(s) + "t(s).

(S2) Spatially and temporally stationary non-Gaussian random field: To induce non-linearity

and non-Gaussianity in the random field we use a Bilinear model of the form

Zt(s) = 0.5Zt�1

(s) + 0.4Zt�1

(s)"t�1

(s) + "t(s).

We note that the nonlinear term 0.4Zt�1

(s)"t�1

(s) induces sporadic bursts in the spatio-

temporal process. The coe�cients 0.5 and 0.4 are chosen to ensure that the process has a

finite second moment (see Subba Rao and Gabr [1984] for details).

8.2.2 Discussion

The results for model S1 and S2 are given Table 1.

We first consider the stationary Gaussian model (S1). The results for all the tests are

relatively good for both ⇢ = 0.5 and ⇢ = 1. However, for the average squared statistics (without

variance adjustment) for H = 10 and ⇢ = 1 there are some inflations in the type I error. This is

probably because without the variance adjustment the average squared statistics depend on the

asymptotic result Wg,bV �1/2(!jH)
P! 1 (see (37)) which depends on the range parameter ⇢ and the

degree of non-Gaussianity. Model S1 is Gaussian, and it seems the error in this approximation

seems only to mildly impact the case H = 10 and ⇢ = 1.

The results from the simulations for the stationary but non-Gaussian model (S2) are very

di↵erent. The average covariance test results keep close to the nominal level (for both ⇢ =

0.5 and 1) however there is a substantial inflation in the type I error (between 70-90%) for

the average squared statistic without variance adjustment (for both H = 10 and H = 20).
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This is likely due to the non-Gaussianity of the process which seems to greatly impact the

rate that Wg,bV �1/2(!jH)
P! 1. However, the variance adjusted average squared covariance test

statistics appear to keep close to the nominal level for both ⇢ = 0.5 and 1 and H = 10 and 20.

This demonstrates that Wg,bV �1/2(!jH)
P! 1 is an asymptotic result and for finite samples it is

important to estimate the variance.

In all cases, both removing and keeping the nugget term NT give comparable results.

Our results in the simulation study demonstrate that both the average covariance and the

variance adjusted average squared covariance test statistics perform well under the null, but

caution needs to be taken when interpreting the results of the non-variance adjusted average

squared covariance tests.

Model S1 Model S2
⇢ ⇢

0.5 1 0.5 1
n 100 500 100 500 100 500 100 500

T
1,g,bV �1/2 0.08 (0.08) 0.08 (0.07) 0.07 (0.07) 0.04 (0.04) 0.09 (0.09) 0.08 (0.09) 0.09 (0.08) 0.08 (0.07)

M
1,g,bV �1/2 0.04 (0.07) 0.05 (0.06) 0.05 (0.06) 0.02 (0.02) 0.06 (0.04) 0.05 (0.06) 0.07 (0.07) 0.06 (0.08)

H=20

T
2,g,bV �1/2,1 0.04 (0.03) 0.01 (0.01) 0.06 (0.04) 0.03 (0.02) 0.45 (0.70) 0.86 (0.91) 0.62 (0.72) 0.94 (0.98)

M
2,g,bV �1/2,1 0.07 (0.08) 0.06 (0.05) 0.07 (0.08) 0.02 (0.03) 0.48 (0.67) 0.80 (0.88) 0.60 (0.70) 0.86 (0.88)

T
2,g,bV �1/2,cW 0.05 (0.05) 0.02 (0.01) 0.07 (0.03) 0.02 (0.01) 0.06 (0.07) 0.05 (0.04) 0.05 (0.05) 0.06 (0.05)

M
2,g,bV �1/2,cW 0.05 (0.06) 0.03 (0.03) 0.05 (0.05) 0.06 (0.05) 0.04 (0.07) 0.06 (0.07) 0.10 (0.09) 0.08 (0.08)

H=10

T
2,g,bV �1/2,1 0.10 (0.10) 0.08 (0.07) 0.12 (0.12) 0.13 (0.14) 0.50 (0.71) 0.85 (0.90) 0.67 (0.78) 0.85 (0.88)

M
2,g,bV �1/2,1 0.08 (0.08) 0.09 (0.08) 0.11 (0.12) 0.16 (0.15) 0.42 (0.58) 0.65 (0.77) 0.53 (0.67) 0.79 (0.83)

T
2,g,bV �1/2,cW 0.10 (0.08) 0.04 (0.04) 0.06 (0.04) 0.04 (0.04) 0.09 (0.10) 0.06 (0.06) 0.05 (0.06) 0.08 (0.10)

M
2,g,bV �1/2,cW 0.05 (0.06) 0.03 (0.04) 0.06 (0.05) 0.05 (0.05) 0.08 (0.10) 0.09 (0.09) 0.10 (0.13) 0.11 (0.12)

Table 1: Empirical type I errors at 5% level based on di↵erent tests with � = 5 for Gaussian
and non-Gaussian stationary data with innovations coming from a Gaussian random field with
exponential covariance functions. Rejection rate without removing NT (see (19)) are in the
parentheses.

8.2.3 Simulations under null using the Whittle spatial covariance

Up to this point all the simulations were conducted using an exponential spatial covariance.

In this section our aim is to understand the behavior of the stationarity test for other spatial

covariance functions. A popular spatial covariance commonly used in spatial statistics, is the

Whittle correlation function (i.e., a Matérn correlation with smoothness parameter ⌫ = 1).

Note that, the feature that distinguishes the exponential from Whittle is that around zero the

exponential is peaked with no derivative whereas the Whittle is smooth. In this section we

consider again the spatio-temporal models (S1 and S2) defined in Section 8.2.1, but generate

the independent innovations "t(s) with a Gaussian process with a spatial Whittle covariance

i.e. cov["t(s1), "t(s2)] = (ks
2

� s
2

k
2

/⇢)K
1

(ks
1

� s
2

k
2

/⇢), where K
1

is the second kind modified

Bessel function of order one. From the plots (Figure 2a and 2b) we see that the range parameter,

⇢, in both exponential and Whittle do not match. For example, when ⇢ = 0.5 or ⇢ = 1 the

Whittle correlation has much thicker tails than the exponential with the same range parameter.
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Since our test is based on the DFTs being close to uncorrelated (and this property is lost when

there is a lot of correlation in the original process compared with the size of the random field),

the Whittle model is expected to give larger type I errors compared with the exponential model

with the same range parameter. Therefore, in order to fairly compare the simulations using

the exponential and Whittle spatial covariances, we adjust the range parameters for the Whittle

correlations to have similar tail behavior as the exponential covariance. From a visual inspection

we find that the Whittle covariance with range parameters ⇢ = 0.37 and ⇢ = 0.72 are the closest

‘match’ to the exponential correlations with range parameters ⇢ = 0.5 and ⇢ = 1, respectively

(see, Figure 2a and 2b).

Based on the above setup the results are reported in Table 2. Comparing Tables 1 and 2

we observe that for the proportion of rejections the results are quite similar to what we noticed

for exponential correlations with ⇢ = 0.5 and 1. This suggests that the test for stationarity is

robust to di↵erent of types of stationary behavior.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lags

C
or

re
la

tio
n

Exp. with ρ= 0.5
Exp. with ρ= 1

Figure 1: Plot of the Exponential correlation function with the range parameters ⇢ = 0.5 and
⇢ = 1.

8.3 Simulations under the alternative

8.3.1 Models

In order to induce spatial nonstationarity in the models (NS2) and (NS3) (defined below) we

define the Gaussian innovations process {⌘t(s); s 2 [��/2,�/2]2}, which is independent over

time with nonstationary covariance cov[⌘t(s1), ⌘t(s2)] = c�(s1, s2) = 
0

(s
2

� s
1

; s
1

) where,

c�(s1, s2) = |⌃
⇣s

1

�

⌘

|1/4|⌃
⇣s

2

�

⌘

|1/4
�

�

�

�

⌃(s1� ) + ⌃(s2� )

2

�

�

�

�

�1/2

exp[�
p

Q�(s1, s2)],
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Figure 2: Plots of exponential and Whittle correlations with di↵erent range parameters.

Model S1 Model S2
⇢ ⇢

0.37 0.72 0.37 0.72
n 100 500 100 500 100 500 100 500

T
1,g,bV �1/2 0.07 (0.06) 0.05 (0.05) 0.08 (0.08) 0.08 (0.08) 0.09 (0.09) 0.08 (0.08) 0.09 (0.08) 0.07 (0.08)

M
1,g,bV �1/2 0.06 (0.07) 0.06 (0.06) 0.08 (0.06) 0.04 (0.04) 0.07 (0.08) 0.06 (0.07) 0.09 (0.09) 0.06 (0.08)

H=20

T
2,g,bV �1/2,1 0.05 (0.04) 0.02 (0.02) 0.04 (0.04) 0.05 (0.04) 0.55 (0.73) 0.97 (0.98) 0.76 (0.82) 0.95 (0.95)

M
2,g,bV �1/2,1 0.06 (0.05) 0.05 (0.05) 0.07 (0.06) 0.06 (0.06) 0.50 (0.68) 0.88 (0.90) 0.72 (0.77) 0.92 (0.92)

T
2,g,bV �1/2,cW 0.04 (0.04) 0.01 (0.03) 0.05 (0.04) 0.04 (0.04) 0.06 (0.05) 0.03 (0.04) 0.06 (0.07) 0.04 (0.04)

M
2,g,bV �1/2,cW 0.06 (0.05) 0.04 (0.03) 0.06 (0.07) 0.04 (0.04) 0.06 (0.05) 0.05 (0.07) 0.09 (0.11) 0.08 (0.09)

H=10

T
2,g,bV �1/2,1 0.12 (0.12) 0.09 (0.09) 0.13 (0.13) 0.15 (0.15) 0.61 (0.74) 0.85 (0.96) 0.75 (0.82) 0.91 (0.92)

M
2,g,bV �1/2,1 0.09 (0.09) 0.10 (0.10) 0.13 (0.13) 0.14 (0.12) 0.46 (0.62) 0.82 (0.86) 0.66 (0.72) 0.84 (0.88)

T
2,g,bV �1/2,cW 0.08 (0.08) 0.03 (0.02) 0.06 (0.04) 0.06 (0.06) 0.09 (0.10) 0.06 (0.07) 0.05 (0.06) 0.06 (0.06)

M
2,g,bV �1/2,cW 0.07 (0.07) 0.04 (0.03) 0.06 (0.05) 0.06 (0.06) 0.08 (0.10) 0.09 (0.09) 0.09 (0.12) 0.07 (0.10)

Table 2: Empirical type I errors at 5% level based on di↵erent tests with � = 5 for Gaus-
sian and non-Gaussian stationary data with innovations coming from a Gaussian random field
with Whittle covariance functions. Rejection rate without removing NT (see (19)) are in the
parentheses.

| · | denotes the determinant of a matrix, Q�(s1, s2) = 2(s
1

� s
2

)
0
[⌃(s1� ) +⌃(s2� )]

�1(s
1

� s
2

) and

⌃(s�) = �(s�)⇤�(
s
�)

0
, where

�
⇣s

�

⌘

=

"

�
1

(s/�) ��
2

(s/�)

�
2

(s/�) �
1

(s/�)

#

, ⇤ =

"

1 0

0 1

2

#

,

with �
1

(s/�) = log (sx/�+ 0.75), �
2

(s/�) = (sx/�)2 + (sy/�)2, and s = (sx, sy)
0
(see Paciorek

and Schervish [2006] and Jun and Genton [2012] for the details on this process). Note that the

variance of this process is constant over the spatial random field and it is simply the correlation

structure that varies over space.
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(NS1) Temporally nonstationary but spatially stationary Gaussian random field: Zt(s) = 0.5Zt�1

(s)+
�

1.3 + sin
�

2⇡t
400

��

"t(s), where {"t(s)} is defined in Section 8.2.1. We use ⇢ = 0.5, ⇢ = 1

and � = 5.

(NS2) Temporally stationary but spatially nonstationary Gaussian random field: The spatio-

temporal process is defined with an AR(1) model Zt(s) = 0.5Zt�1

(s) + ⌘t(s). Following a

similar set-up as in Bandyopadhyay and Subba Rao [2016] we use � = 20. This process

has a constant variance over space and time.

(NS3) Both temporally and spatially nonstationary Gaussian random field: The spatio-temporal

process is defined using an AR(1) model with time-dependent innovations

Zt(s) = 0.5Zt�1

(s) +

✓

1.3 + sin

✓

2⇡t

400

◆◆

⌘t(s).

For the simulations we use � = 20.

8.3.2 Discussion

The empirical powers based on Models NS1 - NS3 are given in Table 3-6.

First we consider Model NS1, which is temporarily nonstationary, but stationary over space.

The results of the general spatio-temporal test using the test set P = {(1, 0), (1, 1),
(0, 1), (�1, 1)} ⇥ {1, 2} and orthogonal estimates set P 0 = {(1, 0), (1, 1), (0, 1), (�1, 1)} ⇥ {4, 5}
(described in Section 4) are given in Table 3. Before discussing the results we note that over the

test set P the Fourier transforms are near uncorrelated. However, the temporal nonstationarity

means that the orthogonal estimators bAg,h(r1, r2) and bBg,h;H(!jH ; r1, r2) for (r1, r2) 2 P 0 do not

necessarily share the same variance. Furthermore, there is correlation between the terms. These

conflicting behaves (decorrelation of DFTs but inability to capture the true variance) helps

explain why the power in the overall test varies between 27%-80% in the case ⇢ = 0.5 and 21%

- 80% in the case ⇢ = 1 (excluding the non-variance adjusted tests). The results of the one-way

temporal stationary and one-way spatial stationary tests (described in Section 5) are given in

Table 4. The power in the one-way temporal tests are close to 100% for all the test statistics (as

we would expect since the process is temporally nonstationary) for both ⇢ = 0.5 and ⇢ = 1. The

power for the one-way spatial tests drops considerably (as expected because NS1 is spatially

stationary) for the average covariance test and variance adjusted average squared covariance

test. In the case of the variance adjusted average squared tests the proportion of rejection is

least in the case ⇢ = 0.5 and H = 10.

Next we consider Model NS2, which is temporarily stationary, but spatially nonstation-

ary. The results are reported in Table 5. In this case the general spatio-temporal test us-

ing the test set P = {(1, 0), (1, 1), (0, 1), (�1, 1)} ⇥ {1, 2} and orthogonal estimates set P 0 =

{(1, 0), (1, 1), (0, 1), (�1, 1)}⇥{4, 5} gives very little power. As we would expect, in the one-way
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test for temporal stationarity the proportion of rejections is close to the nominal level (with the

exception of the variance adjusted test average squared test with H = 20 when the proportion of

rejection is about 12%). However, the test does seem to have some power in the one-way test for

spatial stationarity. In the case that n = 500 all the tests (excluding the non-variance adjusted

tests) have power between 8-21%. This level of power is not high but it is higher than the case

n = 100. The overall low power is because the number of observations is relatively sparse on

the random field (n = 500 and � = 20). Therefore most of the observations are unlikely to be

highly correlated and thus contains very little information about the nonstationary structure

(recall the variance of the spatio-temporal process is constant). It is likely if a larger n were used

in the simulations, the power would increase (compare with the simulations in Bandyopadhyay

and Subba Rao [2016]).

Lastly, we consider Model NS3, which is both temporal and spatial nonstationarity. The

results are presented in Table 6. For the general spatio-temporal tests we get higher powers

than for Model NS1 across all the tests. The power increases to 100% for the one-way temporal

stationary test. For the one-way spatial stationarity tests the power is more than for the same

tests using model NS2.

We mention that for all the models (NS1-NS3) the power for the average squared covariance

test without variance adjustment is very high. However, we have to be cautious about inter-

preting the result of these tests as the simulations under the null of stationarity show that the

these test statistics are unable to keep the nominal level when the process is not Gaussian.

Comparing the rejection rates with and without the nugget term removed (the values outside

and insides the parentheses), we observe that for models NS1 and NS2 the rejection rates with

and without the nugget term are about the same. However, for NS3 the power is slightly more

after removing the nugget term.

Model NS1: Overall Power
⇢

0.5 1
n 100 500 100 500

T
1,g,bV �1/2 0.73 (0.80) 0.60 (0.59) 0.76 (0.74) 0.57 (0.49)

M
1,g,bV �1/2 0.74 (0.78) 0.61 (0.59) 0.80 (0.75) 0.59 (0.51)

H=20

T
2,g,bV �1/2,1 0.99 (0.99) 0.99 (0.99) 0.99 (1.00) 0.97 (0.96)

M
2,g,bV �1/2,1 0.97 (0.99) 0.99 (0.99) 0.98 (0.98) 0.93 (0.92)

T
2,g,bV �1/2,cW 0.44 (0.56) 0.33 (0.27) 0.45 (0.45) 0.22 (0.21)

M
2,g,bV �1/2,cW 0.51 (0.64) 0.47 (0.45) 0.60 (0.57) 0.34 (0.27)

H=10

T
2,g,bV �1/2,1 1.00 (1.00) 1.00 (0.99) 0.99 (1.00) 1.00 (1.00)

M
2,g,bV �1/2,1 0.98 (0.99) 0.99 (0.98) 0.99 (0.98) 0.98 (0.97)

T
2,g,bV �1/2,cW 0.53 (0.56) 0.39 (0.37) 0.55 (0.50) 0.30 (0.27)

M
2,g,bV �1/2,cW 0.52 (0.56) 0.46 (0.44) 0.52 (0.48) 0.33 (0.28)

Table 3: Overall empirical power at 5% level based on di↵erent tests with � = 5 for nonstationary
data generated from the model NS1 with innovations coming from a Gaussian random field
with exponential covariance functions. Rejection rate without removing NT (see (19)) are in the
parentheses.
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Model NS1
Temporal Power Spatial Power

⇢ ⇢
0.5 1 0.5 1

n 100 500 100 500 100 500 100 500
T

1,g,bV �1/2 0.97 (0.99) 1.00 (1.00) 0.97 (0.99) 1.00 (1.00) 0.01 (0.01) 0.01 (0.01) 0.04 (0.03) 0.04 (0.04)
M

1,g,bV �1/2 0.99 (1.00) 1.00 (1.00) 0.99 (0.99) 1.00 (1.00) 0.01 (0.01) 0.02 (0.01) 0.02 (0.02) 0.03 (0.01)

H=20

T
2,g,bV �1/2,1 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.99 (0.99) 0.99 (0.99) 1.00 (1.00) 1.00 (1.00)

M
2,g,bV �1/2,1 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.99 (0.98) 0.99 (0.99) 1.00 (1.00) 1.00 (1.00)

T
2,g,bV �1/2,cW 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.05 (0.04) 0.10 (0.08) 0.15 (0.14) 0.28 (0.31)

M
2,g,bV �1/2,cW 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.15 (0.15) 0.18 (0.16) 0.23 (0.24) 0.31 (0.32)

H=10

T
2,g,bV �1/2,1 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.99 (0.99) 0.99 (0.99) 1.00 (1.00) 1.00 (1.00)

M
2,g,bV �1/2,1 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.99 (0.99) 0.99 (0.99) 1.00 (1.00) 1.00 (1.00)

T
2,g,bV �1/2,cW 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.02 (0.02) 0.06 (0.05) 0.10 (0.11) 0.26 (0.28)

M
2,g,bV �1/2,cW 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.06 (0.06) 0.09 (0.07) 0.14 (0.14) 0.24 (0.26)

Table 4: One-way empirical powers at 5% level based on di↵erent tests with � = 5 for nonsta-
tionary data generated from the model NS1 with innovations coming from a Gaussian random
field with exponential covariance functions. Rejection rate without removing NT (see (19)) are
in the parentheses.

Model NS2
Overall Power Temporal Power Spatial Power

n 100 500 100 500 100 500
T

1,g,bV �1/2 0.09 (0.11) 0.11 (0.11) 0.04 (0.05) 0.05 (0.06) 0.06 (0.07) 0.17 (0.17)
M

1,g,bV �1/2 0.08 (0.08) 0.10 (0.09) 0.03 (0.03) 0.05 (0.06) 0.03 (0.02) 0.15 (0.15)

H=20

T
2,g,bV �1/2,1 0.04 (0.06) 0.06 (0.06) 0.04 (0.05) 0.05 (0.06) 0.24 (0.26) 0.28 (0.31)

M
2,g,bV �1/2,1 0.07 (0.09) 0.07 (0.07) 0.08 (0.08) 0.03 (0.04) 0.12 (0.15) 0.21 (0.25)

T
2,g,bV �1/2,cW 0.07 (0.06) 0.05 (0.04) 0.11 (0.12) 0.12 (0.12) 0.05 (0.06) 0.18 (0.19)

M
2,g,bV �1/2,cW 0.08 (0.06) 0.08 (0.09) 0.11 (0.12) 0.13 (0.12) 0.07 (0.10) 0.21 (0.20)

H=10

T
2,g,bV �1/2,1 0.15 (0.18) 0.15 (0.15) 0.06 (0.07) 0.06 (0.07) 0.38 (0.47) 0.56 (0.59)

M
2,g,bV �1/2,1 0.12 (0.10) 0.13 (0.15) 0.05 (0.06) 0.06 (0.06) 0.32 (0.34) 0.48 (0.50)

T
2,g,bV �1/2,cW 0.08 (0.10) 0.06 (0.05) 0.05 (0.04) 0.04 (0.04) 0.01 (0.02) 0.09 (0.10)

M
2,g,bV �1/2,cW 0.13 (0.14) 0.10 (0.10) 0.06 (0.03) 0.04 (0.05) 0.01 (0.01) 0.08 (0.09)

Table 5: Empirical powers at 5% level based on di↵erent tests with � = 20 for nonstationary
data generated from the model NS2. Rejection rate without removing NT (see (19)) are in the
parentheses.

Model NS3
Overall Power Temporal Power Spatial Power

n 100 500 100 500 100 500
T

1,g,bV �1/2 0.83 (0.80) 0.98 (0.92) 0.92 (0.99) 1.00 (1.00) 0.11 (0.07) 0.33 (0.19)
M

1,g,bV �1/2 0.92 (0.88) 0.99 (0.97) 0.95 (1.00) 1.00 (1.00) 0.18 (0.08) 0.54 (0.25)

H=20

T
2,g,bV �1/2,1 0.99 (0.99) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.99 (1.00) 1.00 (1.00)

M
2,g,bV �1/2,1 0.99 (0.98) 1.00 (0.99) 1.00 (1.00) 1.00 (1.00) 0.99 (1.00) 1.00 (1.00)

T
2,g,bV �1/2,cW 0.65 (0.66) 0.85 (0.77) 1.00 (1.00) 1.00 (1.00) 0.34 (0.22) 0.74 (0.50)

M
2,g,bV �1/2,cW 0.82 (0.80) 0.98 (0.87) 1.00 (1.00) 1.00 (1.00) 0.52 (0.34) 0.90 (0.69)

H=10

T
2,g,bV �1/2,1 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

M
2,g,bV �1/2,1 0.99 (0.99) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

T
2,g,bV �1/2,cW 0.65 (0.63) 0.81 (0.77) 1.00 (1.00) 1.00 (1.00) 0.13 (0.08) 0.45 (0.35)

M
2,g,bV �1/2,cW 0.79 (0.70) 0.94 (0.84) 1.00 (1.00) 1.00 (1.00) 0.32 (0.19) 0.79 (0.58)

Table 6: Empirical powers at 5% level based on di↵erent tests with � = 20 for nonstationary
data generated from the model NS3. Rejection rate without removing NT (see (19)) are in the
parentheses.
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A Proofs

A.1 Proof of Lemma 3.1

To prove the result we start by expanding cov [J(⌦k1 ,!k2), J(⌦k1+r1 ,!k2+r2)].

cov [J(⌦k1 ,!k2), J(⌦k1+r1 ,!k2+r2)]

=
1

2⇡

T�1

X

h=�(T�1)

e�ih!k2
1

T

T�max(0,h)
X

t=1�min(0,h)

cov[Jt(⌦k1), Jt+h(⌦k1+r1)]e
�it!r2

= M +R, (49)

where M is the main term

M =
1

2⇡

T�1

X

h=�(T�1)

e�ih!k2
1

T

T
X

t=1

cov[Jt(⌦k1), Jt+h(⌦k1+r1)]e
�it!r2 ,

and R is the remainder

R =
1

2⇡

T�1

X

h=0

e�ih!k2
1

T

T
X

t=T�h+1

cov[Jt(⌦k1), Jt+h(⌦k1+r1)]e
�it!r2

+
1

2⇡

�1

X

h=�(T�1)

e�ih!k2
1

T

|h|
X

t=1

cov[Jt(⌦k1), Jt+h(⌦k1+r1)]e
�it!r2 .

The expansions above are valid in the general case. Below we obtain expressions for M (the

main term) and bounds for R in the case that the spatio-temporal process is stationary and

nonstationary.

• Spatially stationary

By using the same proof used to prove Theorem 2.1(i), Bandyopadhyay and Subba Rao

[2016], and the rescaling devise over time, under spatial stationary we have, for r
1

6= 0,

cov[Jt(⌦k1), Jt+h(⌦k1+r1)]

=

Z

[��/2,�/2]d
e�i⌦0

rs2

Z

[��/2�s1,��/2]d
h; t

T
(s

1

)ei⌦
0
k1

s1ds
1

ds
2

| {z }

O(

⇢h
�d�b )

+

Z

[��/2,�/2]d
e�i⌦0

rs2

Z

[�/2,�/2+s1]d
h; t

T
(s

1

)ei⌦
0
k1

s1ds
1

ds
2

| {z }

O(

⇢h
�d�b )

+O
⇣ ⇢h
T�d�b

I
Time=NS

⌘

,
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and for r
1

= 0,

cov[Jt(⌦k1), Jt+h(⌦k1+r1)]

=
ct,t+h

�d

Z

[��/2,�/2]d
h; t

T
(v) exp(�iv0⌦k1)dv +

�dnt,t+h

ntnt+h
h, t

T
(0) +O

✓

⇢hITime=NS

T

◆

,

where, b = b(r
1

) is the number of zeros in r
1

, ct,t+h = (ntnt+h � nt,t+h)/ntnt+h, nt,t+h =

|{st,j}nt
j=1

}\ {st+h,j}nt+h

j=1

| and I
Time=NS

denotes the indicator variable for temporal nonsta-

tionarity. Note that we use the notation [��/2�s
1

,��/2]d = [��/2�s
11

]⇥ . . .⇥ [��/2�
s
1d]. Substituting the above into the remainder R we see that |R| = O([T�1+�d/n]I(r

1

=

0) + 1

�d�bT I(r1 6= 0)). Now we derive expression for M for the temporally stationary and

nonstationary separately.

(a) Temporally stationary (i.e., h, t
T
(v) = h(v)) First we look at the case r

1

6= 0. In

the case that r
1

6= 0 and r
2

6= 0, we take the summand
PT

t=1

e�it!r2 inM separate of h giv-

ing M = 0. Therefore, cov [J(⌦k1 ,!k2), J(⌦k1+r1 ,!k2+r2)] = O(��(d�b)T�1). In the case

that r
1

6= 0 but r
2

= 0, we getM = O(��(b�d)), and thus cov [J(⌦k1 ,!k2), J(⌦k1+r1 ,!k2+r2)] =

O(��(d�b)).

Now we consider the case r
1

= 0. In the case that r
1

= 0 but r
2

6= 0, we use Assumption

3.1(ii), where c
1

n  nt  c
2

n, which implies that |ct,t+h � 1|  c2
c1n

and immediately gives

M = O(T�1 +�d/n) and cov [J(⌦k1 ,!k2), J(⌦k1 ,!k2+r2)] = O(�d/n+T�1). On the other

hand, when r
1

= 0 and r
2

= 0 we have M = f(⌦k1 ,!k2) + O(T�1 + ��1 + �d/n), which

immediately leads us to cov [J(⌦k1 ,!k2), J(⌦k1 ,!k2)] = f(⌦k1 ,!k2)+O(T�1+��1+�d/n).

(b) Temporally nonstationary Again it is immediately clear that when r
1

6= 0 (r
2

2 Z)
we have M = O

�

��(d�b)
�

, which gives cov [J(⌦k1 ,!k2), J(⌦k1+r1 ,!k2+r2)] = O(��(d�b) +

T�1). However, when r
1

= 0 (r
2

2 Z) (and using Assumption 3.1(ii)) it is clear that

M =
1

2⇡

T�1

X

h=�(T�1)

e�ih!k2
1

T

T
X

t=1

1

�d

Z

[��/2,�/2]d
h; t

T
(v) exp(�iv0⌦k1)dv +O

✓

�d

n
+

1

T

◆

,

which gives the desired result.

• Spatially nonstationary If the spatio-temporal process is spatially nonstationary, using

the same proof to prove Theorem 2.1(ii), Bandyopadhyay and Subba Rao [2016] and the
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rescaling devise over time and space we have,

cov[Jt(⌦k1), Jt+h(⌦k1+r1)]

=
ct,t+h

�d

Z

[��/2,�/2]2d
h; t

T

⇣

v;
s

�

⌘

exp(�iv0⌦k1) exp(�is0⌦r1)dvds

+

Z

[��/2,�/2]d
e�i⌦0
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Z

[��/2�s,��/2]d
h; t

T

⇣

v;
s

�

⌘

ei⌦
0
k1

vdvds

| {z }

O(⇢h/�)

+

Z

[��/2,�/2]d
e�i⌦0
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Z

[�/2,�/2+s]d
h; t

T

⇣

v;
s

�

⌘

ei⌦
0
k1

vdvds

| {z }

O(⇢h/�)

+
nt,t+h

ntnt+h

Z

[��/2,�/2]d
h; t

T

⇣

0;
s

�

⌘

exp(�is0⌦r1)ds+O

✓

⇢hITime=NS

T

◆

.

Using the above result it is straightforward to show that R = O([1 + �d/n]T�1).

(a) Temporally stationary (i.e., h, t
T
(v, s) = h(v, s)). Since the process is spatially

nonstationary, we consider r
1

= 0 and r
1

6= 0 together. In the case that r
2

6= 0
PT

t=1

e�itr2

is separate of h, thus M = 0 and cov [J(⌦k1 ,!k2), J(⌦k1 ,!k2)] = O(T�1).

If r
2

= 0 we have,

M =
1

2⇡

T�1

X

h=�(T�1)

e�ih!k2
1

�d

Z

[��/2,�/2]d
h

⇣

v;
s

�

⌘

exp(�iv0⌦k1) exp(�is0⌦r1)dvds+O

✓

1

�

◆

,

which immediately leads to the desired result.

(b) Temporally nonstationary In this case using Assumption 3.1(ii) we have,

M =
1

2⇡

T�1

X

h=�(T�1)

e�ih!k2
1

T

T
X

t=1

e�it!r2

⇥ct,t+h

�d

Z

[��/2,�/2]2d
h; t

T

⇣

v;
s

�

⌘

exp(�iv0⌦k1) exp(�is0⌦r1)dvds+O

✓

�d

n
+

1

�

◆

,

thus leading to the desired result.

A.2 Proof of results for stationary spatio-temporal processes

PROOF of Lemma 4.1 The proof of this lemma is identical to the proof of Lemma 3.1 in

Bandyopadhyay and Subba Rao [2016] and hence omitted. ⇤
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To prove the remainder of the results in Section 4 we use the following notation

fh(⌦) =

Z

Rd

h(s) exp(�i⌦0s)ds,

f(⌦,!) =
X

h2Z

exp(�ih!)

Z

Rd

h(s) exp(�i⌦0s)ds,

and

fh1,h2,h3(⌦1

,⌦
2

,⌦
3

) =

Z

R3d

h1,h2,h3(s1, s2, s3) exp(�i(s0
1

⌦
1

+ s0
2

⌦
2

+ s0
3

⌦
3

))ds
1

ds
2

ds
3

.

Note that in this section we do not prove any central limit theorems. However, we conjecture

that by combining Bandyopadhyay et al. [2015], which give a CLT for mixing spatial processes

and the CLT for quadratic forms of a time series (see, for example, Hsing and Wu [2004], Leucht

[2012], Lee and Subba Rao [2015]) asymptotic normality of spatio-temporal quadratic forms can

be proved.

Having established an expression for the mean of bag(·) under stationarity, the main focus

is obtaining expressions for the variance and covariance of bag(·) and the corresponding test

statistics. To do this we define the related quantity eag(·) such that

eag(!k2 ; r1, r2) = bag(!k2 ; r1, r2) +NT ,

where,

NT =
1

2⇡T

T
X

t,⌧=1

eit!k2
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a
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1

ntn⌧

n
X
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�t,j�⌧,jZt(sj)Z⌧ (sj)e
�isj⌦r1 .

More precisely, we have,

eag(!k2 ; r1, r2)

=
1

�d

a
X

k1=�a

g(⌦k1)J(⌦k1 ,!k2)J(⌦k1+r1 ,!k2+r2)

=
1

2⇡T

T
X
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eit!k2
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a
X
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=
1
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X
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eit!k2
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1

�d

a
X
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g(⌦k1)
1

ntn⌧

n
X

j1,j2=1

�t,j1�⌧,j2Zt(sj1)Z⌧ (sj2)

⇥eisj1⌦k1
�isj2⌦k1+r1 ,
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where the second equation follows by expanding J(⌦k1 ,!k2). To understand the role NT plays,

consider the expectation of NT for the case r
1

= 0 and r
2

= 0; not a case included in the text,

but useful in understanding its role. Taking expectation of NT (under stationarity) we have

E[NT ] =
1

2⇡T

a
X

k=�a

g(⌦k1)
T
X

t,⌧=1

exp(�i(⌧ � t)!k2)
nt,⌧

ntn⌧

⇡ �d

n

Z

2⇡[�a/�,a/�]d
g(⌦)d⌦⇥ 1

2⇡

X

h2Z

exp(�ih!k2)h(0) = O

✓

ad

n

◆

.

In the case that we constrain the frequency grid {⌦k;k = (k
1

, . . . , kd),�a  kj  a} to be

bounded, i.e., a/� ! c < 1 as a,� ! 1, then it is clear that E[NT ] = O(�d/n) = o(1).

Furthermore, using similar arguments it can be shown that the variance of NT is asymptotically

negligible and �dvar[bag(!k2 ; r1, r2)] = �dvar[eag(!k2 ; r1, r2)] + o(1) when the frequency grid is

bounded. On the other hand, if the frequency grid is not bounded and a/� ! 1 as � ! 1
then we can show that for r

1

= 0 and r
2

= 0 we have E[NT ] = O(ad/n) and for general r
1

and r
2

�dvar[NT ] = (a2d/n2). Therefore, if the frequency grid is not bounded, bag(!k2 ; r1, r2) and

eag(!k2 ; r1, r2) are not asymptotically equivalent. However, eag(!k2 ; r1, r2) does play an important

role in understanding the covariance of bag(!k2 ; r1, r2), and we come back to this later on.

Returning to bag(!k2 ; r1, r2), we see from the definition of bag(·) that in order to obtain the

covariance of bag(·) we require the expansion

�dcov



1

�d

a
X

k1=�a

g(⌦k1)
1

nt1nt2

X

j1 6=j2

�t1,j1�t2,j2Zt1(sj1)Zt2(sj2)e
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�isj2⌦k1+r1 ,
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X
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1

nt3nt4

X

j3 6=j4

�t3,j3�t4,j4Zt4(sj3)Zt4(sj4)e
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�isj4⌦k3+r3

�

= bA + bB + bC (50)

where,

bA =
1

�d

a
X
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⇥
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bC =
1

�d

a
X
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1
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cum


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�

.

Simplifications for these terms can be obtained by using the methods developed in Subba Rao

[2015a]. Using this we can show

bA =
Ir1=r3

(2⇡)d
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D
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and,
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where,

|R
1,t3�t1,t4�t2 | = O(⇢t3�t1⇢t4�t2`�,a,n),

|R
2,t4�t1,t3�t2 | = O(⇢t4�t1⇢t3�t2`�,a,n), and
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.

We further observe that use of the expansions given in (50) to obtain an expression for

var[bag(!k; r1, r2)] can make the notations extremely cumbersome and di�cult to follow. Proofs

which only involve DFTs can substantially reduce cumbersome notations. However, a DFT

based proof requires the frequency grid to be bounded, and as mentioned in the discussion at

the start of this section, bag(!k2 ; r1, r2) and eag(!k2 ; r1, r2) are only asymptotically equivalent if

the frequency grid is bounded. Therefore to simplify notations, for the remainder of this section

we focus on the case that the frequency grid is bounded. However, we mention that exactly the

same bounds apply to the case when the frequency grid is unbounded.

We observe that in order to obtain an expression for �dcov[bag(!k1 ; r1, r2),bag(!k2 ; r3, r4)] (in

the case that the frequency grid is bounded) we require the expansion

�dcov
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a
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#

= eA + eB + eC,
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where

eA =
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,
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,
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a
X

k1,k3=�a

g(⌦k1)g(⌦k3)cum
h

Jt1(⌦k1), Jt2(⌦k1+r1), Jt3(⌦k3), Jt4(⌦k3+r3)
i

.

Now we obtain simplified expressions for eA, eB and eC.

eA =
Ir1=r3

(2⇡)d

Z

D
|g(⌦)|2ft3�t1(⌦)ft4�t2(⌦+⌦r1)d⌦+R

1,t3�t1,t4�t2 , (51)

eB =
Ir1=r3

(2⇡)d

Z

Dr1

g(⌦)g(�⌦�⌦r1)ft4�t1(⌦)ft3�t2(⌦+⌦r)d⌦+R
2,t4�t1,t3�t2 , (52)

eC =
Ir1=r3

(2⇡)2d

Z

D2

g(⌦
1

)g(⌦
2

)ft2�t1,t3�t1,t4�t1(⌦1

+⌦r1 ,⌦2

,�⌦
2

�⌦r1)d⌦1

d⌦
2

+R
3,t2�t1,t3�t1,t4�t1 . (53)

Comparing the above with (50), when the frequency grid is unbounded, see that the expressions

are identical. We use the above to prove Lemma 4.2.

PROOF of Lemma 4.2 By decomposing the covariance we have

�dcov [bag(!k2 ; r1, r2),bag(!k4 ; r3, r4)] = Ik2,k4 + IIk2,k4 + IIIk2,k4 ,

where,

Ik2,k4 =
1

�d

a
X

k1,k3=�a

g(⌦k1)g(⌦k3)cov [J(⌦k1 ,!k2), J(⌦k3 ,!k4)]

⇥cov
h

J(⌦k1+r1 ,!k2+r2), J(⌦k3+r3 ,!k4+r4)
i

,

IIk2,k4 =
1

�d

a
X

k1,k3=�a

g(⌦k1)g(⌦k3)cov
h

J(⌦k1 ,!k2), J(⌦k3+r3 ,!k4+r4)
i

⇥cov
h

J(⌦k1+r1 ,!k2+r2), J(⌦k3 ,!k4)
i

,
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and

IIIk2,k4 =
1

�d

a
X

k1,k3=�a

g(⌦k1)g(⌦k3)

⇥cum
h

J(⌦k1 ,!k2), J(⌦k1+r1 ,!k2+r2), J(⌦k3 ,!k4), J(⌦k3+r3 ,!k4+r4)
i

.

By using (51)-(52) we obtain expressions for the Ik2,k4 , IIk2,k4 and IIIk2,k4 . We first consider

Ik2,k4 . Using (51) we have,

Ik2,k4 =
1

�d

a
X

k1,k3=�a

g(⌦k1)g(⌦k3)cov [J(⌦k1 ,!k2), J(⌦k3 ,!k4)]

⇥cov
h

J(⌦k1+r1 ,!k2+r2), J(⌦k3+r3 ,!k4+r4)
i

= Ik1,k2,M + Ik1,k2,R, (54)

where,

Ik1,k2,M =
Ir1=r3

(2⇡)d+2T 2

T
X

t1,t2,t3,t4=1

Z

D
|g(⌦)|2ft3�t1(⌦)ft4�t2(⌦+⌦r)

⇥eit1!k2
�it2!k2+r2

�it3!k3
+it4!k4+r4d⌦,

Ik1,k2,R =
1

(2⇡)d+2T 2

T
X

t1,t2,t3,t4=1

R
1,t3�t1,t4�t2e
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�it2!k2+r2

�it3!k3
+it4!k4+r4 .

We first find an expression for Ik1,k2,M

Ik1,k2,M =
Ir1=r3

(2⇡)d+2T 2

Z

D
|g(⌦)|2

0

@

T�1

X

s1=�(T�1)
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)
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)
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A d⌦

=
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✓
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✓

Ir1=r3

T
+ `�,a,n

◆

.

It is straightforward to show that Ik1,k2,R = O(`�,a,n). Therefore we have

Ik1,k2 =
Ir1=r3Ik2=k4Ir2=r4

(2⇡)d

Z

D
|g(⌦)|2f(⌦,!k2)f(⌦+⌦r1 ,!k2+r2)d⌦+O

✓
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◆

.
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Using the same arguments and (52)

IIk2,k4 =
1

�d

a
X

k1,k3=�a

g(⌦k1)g(⌦k2)
T
X

t1,...,t4=1

exp(it
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!k2 + it
4

!k4+r4 � it
2
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3

!k4)

cov
h

Jt1(⌦k1), Jt4(⌦k3+r3)
i

cov
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Jt2(⌦k1+r1), Jt3(⌦k3)
i

=
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X
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)

1
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✓
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◆

. (55)

Using (53) (see the proof of Theorem 4.1, Jentsch and Subba Rao [2015] for details) we have

IIIk2,k4

=
Ir1=r3

(2⇡)2dT 2
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D2

g(⌦
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)
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⇥eit1!k2
�it2!k2+r2

�it3!k4
+it4!k4+r4d⌦

1

d⌦
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+
1

(2⇡)dT 2

T
X
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R
3,t2�t1,t3�t1,t4�t1e

it1!k2
�it2!k2+r2

�it3!k4
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X
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)d⌦
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+
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X
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R
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⇥
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X

t=|min(si,0)|+1
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By changing the limits of the sum we have

IIIk2,k4

=
Ir1=r3

(2⇡)2dT 2

Z

D2

g(⌦
1

)g(⌦
2

)
T�1

X

s1,s2,s2=�(T�1)

fs1,s2,s3(⌦1
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,�⌦
2
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⇥e�is1!k2+r2
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T
X

t=1

eit(!k2
�!k2+r2

�!k4
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)d⌦
1

d⌦
2
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✓

`�,a,n +
1

T 2

◆

=
Ir1=r3Ir2=r4

(2⇡)2dT

Z

D2

g(⌦
1

)g(⌦
2

)f(⌦
1

+⌦r1 ,!k2 + !r2 ,⌦1

,!k2 ,�⌦
2

�⌦r1 ,�!k4 � !r2)

d⌦
1

d⌦
2

+O

✓

`�,a,n
T

+
Ir1=r3Ir2=r4

T 2

◆

(56)

The above results imply

�dcov[bag(!k2 ; r1, r2),bag(!k4 ; r3, r4)]

=
Ir1=r3Ir2=r4

(2⇡)d

✓

Ik2=k4

Z

D
g(⌦)g(⌦)f(⌦+⌦r1 ,!k2+r2)f(⌦,!k2)d⌦

+Ik4=T�k2�r2

Z

Dr

g(⌦)g(�⌦�⌦r1)f(⌦,�!k2)f(�⌦�⌦r1 ,!k2+r2)d⌦

◆

+O

✓

`�,a,n +
1

T

◆

.

By using the well known identities

cov(<A,<B) =
1

2

�

<cov(A,B) + <cov(A, B̄)
�

cov(=A,=B) =
1

2

�

<cov(A,B)�<cov(A, B̄)
�

,

cov(<A,=B) =
�1

2

�

=cov(A,B)�=cov(A, B̄)
�

, (57)

we immediately obtain (20).

Asymptotic normality is proved using su�cient mixing assumptions. ⇤

A.2.1 PROOF of results in Section 7.1 (used in Section 4.2)

We start by analyzing the sampling properties of the first test statistic bAg,h(r1, r2).

PROOF of Lemma 7.1 We first note that

�dT

2
cov

h

bAg,h(r1, r2), bAg,h(r3, r4)
i

= I + II + III,
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where,

I =
2

T

T/2
X

k2,k4=1

Ik2,k4 II =
2

T

T/2
X

k2,k4=1

IIk2,k4 III =
2

T

T/2
X

k2,k4=1

IIIk2,k4

and Ik2,k4 , IIk2,k4 and IIIk2,k4 are defined in the proof of Lemma 4.2. We now obtain expressions

for these terms. By substituting the expression for Ik2,k4 in (54) into I we have

I =
2Ir1=r3

(2⇡)d+2T

T
X

t1,t2,t3,t4=1

Z

D
|g(⌦)|2ft3�t1(⌦)ft4�t2(⌦+⌦r)d⌦

⇥e�it2!r2+it4!r4

✓

1

T 2

T/2
X

k2,k4=1

h(!k2)h(!k4)e
i!k2

(t1�t2)e�i!k4
(t3�t4)

◆

+
2

T 3

T/2
X

k2,k4=1

h(!k2)h(!k4)
X

t1,t2,t3,t4=1

R
1,t3�t1,t4�t2e

it1!k2
�it2!k2+r2

�it3!k4
it4!k4+r4

= IM + IR.

We first obtain a neat expression for the leading term IM . Using that the function h : [0, ⇡] ! R
is piecewise Lipschitz continuous and the integral approximation of the Riemann sum, we have

2

T

T/2
X

k=1

h(!k)e
ij!k = hj +O(T�1)

where hj =
1

⇡

R ⇡

0

h(!)eij!d! and the Fourier coe�cients decay at the rate |hj|  C|j|�1I(j 6= 0).

This approximation gives

4

(2⇡)2T 2

T/2
X

k2,k4=1

h(!k2)h(!k4) exp(i!k2(t1 � t
2

)) exp(�i!k4(t3 � t
4

))

= ht1�t2ht3�t4 +O(ht1�t2T
�1 + ht3�t4T

�1 + T�2).

Substituting this into IM and using that |hj|  C|j|�1I(j 6= 0) gives

IM =
2Ir1=r3

(2⇡)d+2T

T
X

t1,t2,t3,t4=1
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D
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+O((log T )T�1).

By making the following change of variables, s
1

= t
3

� t
1

, s
2

= t
4

� t
2

and s
3

= t
1

� t
2

(so
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t
3

� t
4

= s
1

� s
2

+ s
3

) we have
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where in the last term we have used that T�1
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e�it2(!r2�!r4 ) = I(r
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). Next we use that
P

s3
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By using a similar method we can show that |IR| = O(`�,a,n). Altogether (using that f is real)

we get

I =
Ir1=r3Ir2=r4

(2⇡)d

Z ⇡

0

Z

D
|h(!)|2|g(⌦)|2f(⌦,!)f(⌦+⌦r1 ,! + !r2)d⌦d!

+O((log T )T�1 + `�,a,n)

= Ir1=r3Ir2=r4

Z ⇡

0

|h(!)|2Vg(!;⌦r1 ,!r2)d!.

Using similar arguments we can show that

II =
Ir1=r3

(2⇡)d+2T

T
X

t1,t2,t3,t4=1

Z

Dr1

g(⌦)g(�⌦�⌦r)ft4�t1(⌦)ft3�t2(⌦+⌦r)d⌦

⇥eit2!r2+it4!r4

✓

1

T 2

T/2
X

k2,k4=1

h(!k2)h(!k4)e
i!k2

(t1�t2)e�i!k4
(t3�t4)

◆
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We set s
1

= t
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� t
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= t
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� t
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= t
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(and t
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) to give
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By changing the limits of the sum over t
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we have
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where the last line follows from the fact that r
1

and r
2

are constrained such that 0  r
1

 r
2

<

T/2. The following expression for III follows immediately from (56).
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This gives us
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Note that 1/[(2⇡)d⇡2] = 4/(2⇡)2d+2 gives the fourth order cumulant term in (42).

By using the expressions for I, II and III and (57), we obtain (42).

By using mixing-type arguments the CLT can be proved. ⇤

A.2.2 Proof of results in Section 7.1 (used in Section 4.3)

PROOF of Lemma 7.2 equation (43) Expanding cov [Bg,h;H(!j1H ; r1, r2), Bg,h;H(!j2H ; r3, r4)]
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gives
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We first bound the inner sum in IH,M . Using the approximation of the Riemann sum by an

integral we have,
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h(!)eis!d! +O(H�1) = hs,H(!jH) +O(H�1).

(58)
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Applying the above to the following product gives

1

H2

H
X

k2,k4=1

h(!jH + !k2)h(!jH + !k4)e
i(!jH+!k2

)(t1�t2)e�i(!jH+!k4
)(t3�t4)

= ht1�t2,H(!jH)ht3�t4,H(!jH) +O(ht1�t2,H(!jH)H
�1 + ht3�t4,H(!jH)H

�1 +H�2).

Substituting the above into IH,M , using that

H

(2⇡)d+2T 2

T
X

t1,t2,t3,t4=1

Z

D
|g(⌦)|2ft3�t1(⌦)ft4�t2(⌦+⌦r)d⌦ = O(H)

and the same arguments used to bound IM in the proof of Lemma 7.1 we have,

IH,M =
Ir1=r3Ir2=r4T

(2⇡)d+2H

Z

2⇡!(j+1)H

2⇡!jH

Z

D
|h(!)|2|g(⌦)|2f(⌦,!)f(⌦+⌦r,! + !r2)d⌦d!

+O(H�1 + (log T )T�1).

Using the same argument we can show that IH,R = O(`�,a,n), which gives altogether

IH =
Ir1=r3Ir2=r4T

(2⇡)d+2H

Z !(j+1)H

!jH

Z

D
|h(!)|2|g(⌦)|2f(⌦,!)f(⌦+⌦r,! + !r2)d⌦d!

+O(H�1 + (log T )T�1 + `�,a,n).

Using the same methods, we can show that IIH = O(H�1+(log T )T�1+`�,a,n) (since  r
2

, r
4


T/2). Finally to bound IIIH we substitute (56) into IIIH to give

IIIH =
Ir1=r3Ir2=r4

(2⇡)2dTH

H
X

k2,k4=1

Z

D2

g(⌦
1

)g(⌦
2

)⇥

f(⌦
1

,!jH+k2 ,�⌦
1

�⌦r1 ,�!jH+k2+r2 ,�⌦
2

,�!jH+k4)d⌦1

d⌦
2

+O

✓

H`�,a,n
T

+
HIr1=r3Ir2=r4

T 2

◆

By using (58) we have

IIIH =
TIr1=r3Ir2=r4

H(2⇡)2d+2

Z !(j+1)H

!jH

Z !(j+1)H

!jH

Z

D2

g(⌦
1

)g(⌦
2

)h(!
1

)h(!
2

)

⇥f
4

(⌦
1

+⌦r1 ,⌦2

,!
2

,�⌦
2

�⌦r1 ,�!
2

� !r2)d⌦1

d⌦
2

d!
1

d!
2

+O((log T )T�1 + `�,a,n +H�1).

We observe that IIIH = O(H/T ). Thus by using (57) we obtain (43) and a similar expression

for the imaginary parts. ⇤
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PROOF of Lemma 7.2 equation (44) The proof of (44) follows immediately from (42). ⇤

Finally we consider the sampling properties of bDg,h,v;H(r1, r2).

PROOF of Lemma 7.3. To prove (45) we expand the expectation squared in terms of

covariance and expectations to give

E[�dDg,h,v;H(r1, r2)] = I + II

where

I =
2H

2T

(T/2H)�1

X

j=0

var[
p
H�dBg,h;H(!j1H ; r1, r2)], and

II =
2H

2T

(T/2H)�1

X

j=0

�

�

�

E[
p
�dHBg,h;H(!j1H ; r1, r2)]

�

�

�

2

.

Using (43) we have

I =
2H

T

T/(2H)�1

X

j=0

2

2v(!j1H)

✓

var[
p
H�d<Bg,h;H(!j1H ; r1, r2)]

+var[
p
H�d=Bg,h;H(!j1H ; r1, r2)]

◆

+O(`�,a,n)

=
2H

T

T/(2H)�1

X

j=0

1

v(!j1H)
Wg,h(!jH ;⌦r1 ,!r2) +O

✓

`�,a,n +
1

H

◆

=
1

⇡

Z ⇡

0

Wg,h(!;⌦r1 ,!r2)

v(!)
d! +O

✓

`�,a,n +
1

H
+

H

T

◆

= Eg,h,v(⌦r1 ,!r2) +O

✓

`�,a,n +
1

H
+

H

T

◆

.

Next we consider the second term II. First considering the expectation we note that

E[
p
�dHBg,h;H(!j1H ; r1, r2)] =

p
�d/2

p
H

H
X

k=1

h(!jH+k)E[bag(!jH+k; r1, r2)].

By using Lemma 4.1 we obtain bounds on E[bag(!jH+k; r1, r2)], however, these rely on the number

of zeros in r
1

and whether r
2

is zero or not. More precisely,

�

�

�

�

�

p
�d/2

p
H

H
X

k=1

h(!jH+k)E[bag(!jH+k; r1, r2)]

�

�

�

�

�

= O

 

�d/2H1/2
Qd�b

j=1

(log �+ log |mj|)
T Ir2�r4 6=0�d�b

!

.
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Therefore,

II = O

 

�dH[
Qd�b

j=1

(log �+ log |mj|)]2

(T Ir2�r4 6=0�d�b)2

!

= o(1).

This proves (45).

To prove (46) we expand the covariance in terms of products cumulants to give

T

2M
cov

⇥

�dDg,h,v;H(r1, r2),�
dDg,h,v;H(r3, r4)

⇤

=
2�2dH

T

(T/2H)�1

X

j1,j2=0

1

v(!j1H)v(!j2H)

✓

|cov[Bg,h;H(!j1H ; r1, r2), Bg,h;H(!j2H ; r1, r2)]|
2

+
�

�

�

cov[Bg,h;H(!j1H ; r1, r2), Bg,h;H(!j2H ; r1, r2)]
�

�

�

2

+cum
h

Bg,h;H(!j1H ; r1, r2), Bg,h;H(!j1H ; r1, r2), Bg,h;H(!j2H ; r1, r2), Bg,h;H(!j2H ; r1, r2)
i

+E[Bg,h;H(!j1H ; r1, r2)]cum
h

Bg,h;H(!j1H ; r1, r2), Bg,h;H(!j2H ; r1, r2), Bg,h;H(!j2H ; r1, r2)
i

+ similar terms involving the product of third and first order cumulants

◆

.

By using that

1

�3d

a
X

k1,k3,k5=�a

g(⌦k1)g(⌦k3)g(⌦k5)cum



Jt1(⌦k1)Jt2(⌦k1+r1), Jt3(⌦k3)Jt4(⌦k3+r3),

Jt5(⌦k5)Jt6(⌦k5+r5)

�

= O

0

@

X

B3

Y

(ti,tj)2B3

⇢ti�tj

log3d(a)

�2d

1

A (59)

and

1

�4d

a
X

k1,k3,k5,k7=�a

g(⌦k1)g(⌦k3)g(⌦k5)g(⌦k7)cum



Jt1(⌦k1)Jt2(⌦k1+r1), Jt3(⌦k3)Jt4(⌦k3+r3),

Jt5(⌦k5)Jt6(⌦k5+r1), Jt7(⌦k3)Jt8(⌦k7+r3)

�

= O

0

@

X

B4

Y

(ti,tj)2B4

⇢ti�tj

log4d(a)

�3d

1

A , (60)

where B
3

and B
4

denotes the set of all pairwise indecomposable partitions of the sets {1, 2, 3}⇥
{4, 5, 6} and {1, 2, 3, 4}⇥ {5, 4, 6, 7} (for example, it contains the element (1, 4), (3, 6)
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, (5, 8), (2, 7)) respectively, we can show that

�3d/2cum
h

ag(!k2 ; r1, r2), ag(!k2 ; r1, r2), ag(!k4 ; r1, r2)
i

= O

✓

log3d(a)

�d/2

◆

�2dcum
h

ag(!k2 ; r1, r2), ag(!k2 ; r1, r2), ag(!k4 ; r1, r2), ag(!k4 ; r1, r2)
i

= O

✓

log4d(a)

�d

◆

.

From this we expect (by using the methods detailed in the proof of Lemma B.5, Eichler [2008]),

though a formal proof is not given, that the terms involving cumulants of order three and above

are asymptotically negligible. Moreover that
�

�

�

cov[Bg,h;H(!j1H ; r1, r2), Bg,h;H(!j2H ; r1, r2)]
�

�

�

2

is

asymptotically negligible for j
1

6= j
2

. Using this we have

T

2M
cov

⇥

�dDg,h,v;H(r1, r2),�
dDg,h,v;H(r3, r4)

⇤

=
2�2dH

T

(T/2H)�1

X

j1,j2=0

1

v(!j1H)v(!j2H)
|cov[Bg,h;H(!j1H ; r1, r2), Bg,h;H(!j2H ; r1, r2)]|

2 .

Substituting (43) into the above gives (46). ⇤
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