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Abstract

Many random phenomena in the environmental and geophysical sciences are functions

of both space and time; these are usually called spatio-temporal processes. Typically,

the spatio-temporal process is observed over discrete equidistant time and at irregularly

spaced locations in space. One important aim is to develop statistical models based on

what is observed. While doing so a commonly used assumption is that the underlying

spatio-temporal process is stationary. If this assumption does not hold, then either the

mean or the covariance function is misspecified. This can, for example, lead to inaccurate

predictions. In this paper we propose a test for spatio-temporal stationarity. The test is

based on the dichotomy that Fourier transforms of stochastic processes are near uncorre-

lated if the process is second order stationary but correlated if the process is second order

nonstationary. Using this as motivation, a Discrete Fourier transform for spatio-temporal

data over discrete equidistant times but on irregularly spaced spatial locations is defined.

Two statistics which measure the degree of correlation in the Discrete Fourier transforms

are proposed. These statistics are used to test for spatio-temporal stationarity. It is shown

that the same statistics can also be adapted to test for the one-way stationarity (either

spatial or temporal stationarity). The proposed methodology is illustrated with a small

simulation study.
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1 Introduction

Several environmental and geophysical phenomena, such as tropospheric ozone and precipitation

levels, are random quantities depending on both space and time. Since, in practice, it is only

possible to observe the process on a finite number of locations in space, {sj}nj=1

and typically

over discrete equidistant time t = 1, . . . , T , one aim in the geosciences is to develop statistical

models based on what is observed. Typically this is done by fitting a parametric space-time

covariance function defined on {Zt(s); s 2 Rd, t 2 Z} to the data. Such models can then be used

for prediction and forecasting at unobserved locations; see Gneiting et al. [2006] and Sherman

[2010] for an extensive survey on space-time models. In this context, an assumption that is often

used is that the underlying spatio-temporal process {Zt(s); s 2 Rd, t 2 Z} is stationary, in the

sense that E[Zt(s)] = µ and cov[Zt(s1), Z⌧ (s2)] = ⌧�t(s2 � s
1

). If this assumption does not

hold, then either the mean or the covariance function is misspecified which, for example, can

lead to inaccurate predictions. Therefore, in order to understand the underlying structure of

the spatio-temporal process correctly we should test for second order stationarity of the spatio-

temporal process first. Furthermore, given that often the size of the data sets are extremely

large, the test should be computationally feasible. The aim of this paper is to address these

issues.

Before we describe the proposed procedure, we start by surveying some of the tests for

stationarity that exist in the literature. One of the earliest tests for temporal stationarity is given

in Priestley and Subba Rao [1969]. More recently, several tests for temporal stationarity have

been proposed; these include von Sachs and Neumann [1999], Paparoditis [2009], Paparoditis

[2010], Dette et al. [2011], Dwivedi and Subba Rao [2011], Jentsch [2012], Nason [2013], Lei

et al. [2015], Jentsch and Subba Rao [2015], Cho [2014] and Puchstein and Preuss [2016].

For spatial data, Fuentes [2006] generalizes the test proposed in Priestley and Subba Rao

[1969] to spatial data defined on a grid and Epharty et al. [2001] proposes a test for spatio-

temporal stationarity for data defined on a spatio-temporal grid. However, if the spatial data is

defined on irregular locations (typically, a more realistic scenario), then there exists only a few

number of tests. As far as we are aware, the first test for spatio-temporal stationarity, where

the spatial component of the data is observed at irregular locations is proposed in Jun and

Genton [2012]. More recently, Bandyopadhyay and Subba Rao [2016] propose a test for spatial

stationarity where the data is observed at irregular locations.

In this paper we develop a test for spatio-temporal stationarity, where time is defined on Z
and the locations are irregular on Rd. Our procedure is heavily motivated by the tests in Epharty

et al. [2001], Dwivedi and Subba Rao [2011], Jentsch and Subba Rao [2015] and Bandyopadhyay

and Subba Rao [2016], which use a Fourier transform of the data to discriminate between the

stationary and nonstationary behavior. To motivate our approach let us consider the Cramér

representation of a stationary stochastic process, which states that a second order stationary
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stochastic process, {Zt(s), s 2 Rd, t 2 Z} can always be represented as

Zt(s) =
1

2⇡

Z

2⇡

0

Z

Rd

exp(it!) exp(is0⌦)dZ(⌦,!), (1)

where, Z(⌦,!) is a stochastic process with orthogonal increments, i.e., E[dZ(⌦
1

,!
2

)dZ(⌦
3

,!
4

)] =

0 if ⌦
1

6= ⌦
3

or !
2

6= !
4

and E[|dZ(⌦
1

,!
2

)|2] = dF (⌦,!) = f(⌦,!)d⌦d!, where f denotes the

spectral density (and the second equality only holds if the derivative of F exists); see Subba Rao

and Terdik [2016]. On the other hand, if the increments are correlated, then the process is not

second order stationary (see for example, Gladyshev [1963], Goodman [1965], Yaglom [1987] Lii

and Rosenblatt [2002], Hindberg and Olhede [2010], Gorrostieta et al. [2016]). Furthermore, the

increment process yields information about the stationarity of the process in particular domains.

For example, suppose the process is spatially stationary (but not necessarily temporally station-

ary), then E[dZ(⌦
1

,!
2

)dZ(⌦
3

,!
2

)] = 0 if ⌦
1

6= ⌦
3

. Conversely, if the process is temporally

stationary but not spatially stationary, then E[dZ(⌦
1

,!
2

)dZ(⌦
1

,!
4

)] = 0 if !
2

6= !
4

.

Of course in practice the increment process is unobserved. However, in time series analysis the

Discrete Fourier transform (DFT) of a time series is considered as an estimator of the increments

in the increment process and shares many of its properties. In particular, the Discrete Fourier

transform of a stationary time series is a ‘near uncorrelated’ transformation, thus mirroring

the properties of the increment process. In Dwivedi and Subba Rao [2011] and Jentsch and

Subba Rao [2015] we use the Discrete Fourier transform to test for stationarity. On the other

hand, the Fourier transform for spatial data defined on irregular locations is not uniquely defined.

However, Matsuda and Yajima [2009] and Bandyopadhyay and Lahiri [2009] define a Fourier

transform on spatial data with irregular locations which can be shown to share similar properties

as the increment process when the locations are uniformly distributed. In Bandyopadhyay and

Subba Rao [2016] we exploit this property to test for spatial stationarity. In this paper we

combine both these transformations to define a Discrete Fourier transform for spatio-temporal

data that is defined over discrete time but on irregular spatial locations. We show that this

space-time Discrete Fourier transform satisfies many of the properties of (1); in particular under

stationarity the space-time DFT is asymptotically uncorrelated, whereas under nonstationarity

this property does not hold. In this paper we use this dichotomy to define tests of stationarity

for spatio-temporal processes.

In Section 2.1 we review the test for temporal stationarity proposed in Dwivedi and Subba Rao

[2011] and Jentsch and Subba Rao [2015]. In Section 2.2 we review the test for spatial stationarity

proposed in Bandyopadhyay and Subba Rao [2016]. We note that there are some fundamental

di↵erences between the testing methodology over time compared to the testing methodology

over space. The first is that over discrete time the Fourier transform can only be defined over a

compact support, whereas the Fourier transform on space can be defined over Rd (see the range

of the integrals in (1)). This leads to significant di↵erences in the way that the test statistics
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can be defined. Furthermore, both the test over time and the test over space involve variances

which need to be estimated. In the test for stationarity proposed in Jentsch and Subba Rao

[2015] we used the stationary bootstrap to estimate the variance, however using a block-type

bootstrap for the spatial stationarity test was computationally too intensive. Instead we used

the method of orthogonal samples to estimate the variance, which led us to a computationally

feasible test statistic.

In Section 3 we turn to the spatio-temporal data. We define a Fourier transform (to reduce

notation we call it a “DFT”), which is over irregular locations in space, but for equidistant

discrete time. We obtain the correlation properties of the DFTs in the case of (i) spatial and

temporal stationarity, (ii) spatial stationarity (but not necessarily temporally stationary), (iii)

temporal stationarity (but not necessarily spatially stationary) and (iv) both temporal and

spatial nonstationarity. We show that each case has its own specific characterization in terms of

the DFTs. In Section 4 we use the di↵ering behaviors to construct the test statistics. Similar to

both the stationarity test over space and the stationarity test over time, the test here involves

unknown variances, which are estimated using orthogonal samples. This means the test statistic

can be calculated in O(n2T log T ) computing operations. In Section 5 we apply the methodology

for testing one-way stationarity (stationary in one domain but not necessarily stationary on the

other domain).

The proposed tests are illustrated with simulations in Section 8 of the supplementary ma-

terial. And a rough outline of the proofs is also given in the appendix of the supplementary

material.

2 Using the DFT to test for stationarity over time or

space

Our test for spatio-temporal stationarity is based on some of the ideas used to develop the

temporal and spatial tests in Dwivedi and Subba Rao [2011], Jentsch and Subba Rao [2015]

and Bandyopadhyay and Subba Rao [2016]. Therefore in Sections 2.1 and 2.2 we review some

pertinent features of these tests.

2.1 Testing for temporal stationarity

Let us suppose that {Xt} is a stationary time series where ch = cov[Xt, Xt+h] and
P

h |hch| <
1. Given that we observe {Xt}Tt=1

, we define the DFT of a time series {Xt}Tt=1

as JT (!k) =
1p
2⇡T

PT
t=1

Xteit!k , where !k = 2⇡k/T are the so called Fourier frequencies. In the case of

a second-order stationary time series process {Xt} (and the short memory condition stated

above), it is well-known that for 1  k
1

6= k
2

 bT/2c (to ease notation, from now onwards

we assume that T is even) cov(JT (!k1), JT (!k2)) = O( 1

T ) holds (uniformly in T , k
1

and k
2

).
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That is, the DFT transforms a second order stationary time series into a ‘near uncorrelated

sequence’ {JT (!k)} whose variance is approximately equal to the spectral density f(!k) =
1

2⇡

P

h2Z ch exp(�ih!k). In the case of second order nonstationarity, the behavior of {JT (!k)} is

indeed much di↵erent. This observation has been exploited by Dwivedi and Subba Rao [2011]

and Jentsch and Subba Rao [2015] to construct tests for second-order stationarity. We now

briefly describe the procedure proposed in Jentsch and Subba Rao [2015] to test for stationarity

of a multivariate time series. To understand the pertinent features of the test, we focus on

the univariate case. In contrast to (second order) stationary time series, the DFT sequence

of a nonstationary time series shows a non-vanishing linear dependence structure. Hence, it

turns out to be natural to estimate this linear dependence by covariance-type quantities and

to construct a test statistic that measures their deviation from zero. Instead of using the ‘raw’

DFTs, Jentsch and Subba Rao [2015] propose to use the ‘standardized’ DFTs to define the

following estimator of the covariance between the DFTs at ‘lag’ r by

bCT (r, `) =
1

T

T
X

k=1

exp(i`!k)
JT (!k)JT (!k+r)
q

bfT (!k) bfT (!k+r)
, (2)

where bfT is the smoothed periodogram to estimate the spectral density f . Note that JT (!k) has

approximately variance f(!k). If we set ` = 0, then { bCT (r, 0)}r can be viewed as the sample

‘autocovariance’ of the sequence {JT (!k)/ bfT (!k)1/2}Tk=1

over frequency. Under the assumption of

fourth order stationarity, Jentsch and Subba Rao [2015] showed that the approximate ‘variance’

(in terms of the limiting distribution) of both < bCT (r, `) and = bCT (r, `) (where <x and =x denote

the real and imaginary parts of x) is

v`(!r) =
1

2
[1 + �`,0 + `(!r)]

with

`(!r) =
1

2⇡

Z

2⇡

0

Z

2⇡

0

f
4

(�
1

+ !r,�2

,��
2

� !r)
p

f(�
1

)f(�
1

+ !r)f(�2

)f(�
2

+ !r)
exp[i`(�

1

� �
2

)]d�
1

d�
2

(3)

and f
4

is the fourth order spectral density, which is defined as

f
4

(!
1

,!
2

,!
3

) =
1

(2⇡)3

X

h1,h2,h32Z

h1,h2,h3 exp(�ih
1

!
1

� ih
2

!
2

� ih
3

!
3

),

where h1,h2,h3 = cum[X
0

, Xh1 , Xh2 , Xh3 ]. Moreover, for fixed ` and m and under suitable mixing

conditions we have

p
T
h

< bCT (1, `),= bCT (1, `), . . . ,< bCT (m, `),= bCT (m, `)
i

D! N (0, v`(0)I2m) , (4)
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as T ! 1, where I
2m denotes the identity matrix of order 2m. Note that v`(!r) ! v`(0) as

T ! 1. We observe that in the case where the time series is (fourth order) stationary and

Gaussian, we have `(0) = 0 and v`(0) simplifies to become v`(0) =
1

2

(1 + �
0,`); consequently,

{ bCT (r, `} is pivotal (does not depend on any nuisance parameters). In contrast, if the time

series is (fourth order) stationary but non-Gaussian, the term `(0) does not vanish (indeed

assuming Gaussianity when the process is not Gaussian can lead to inflated type I errors in the

test statistic defined below); compare Section 6.2 in Jentsch and Subba Rao [2015].

Based on (4) for some fixed (single) `, the test statistic can then defined as

eTm = T
m
X

r=1

| bCT (r, `)|2

v`(0)
, (5)

which under the null of stationarity, asymptotically has a chi-squared distribution with 2m

degrees of freedom. However, in practice v`(0) is unknown. Therefore, Jentsch and Subba Rao

[2015] use the stationary bootstrap, proposed in Politis and Romano [1994], to estimate v`(0)

(actually they estimate v`(!r)). Note that in Jentsch and Subba Rao [2015] a more general

statistic based on the full set{ bCT (r, `); r = 1, . . . ,m, ` = 1, . . . , L} (for multivariate time series)

is proposed.

After having understood the asymptotic behavior of test statistics as in (5) under the null of

second order stationarity (we have to assume fourth order stationarity to establish the asymp-

totic results above), Jentsch and Subba Rao [2015] assume that the time series ‘evolves’ slowly

over time (a notion that was first introduced in Priestley [1965]) to understand how bCT (r, `)

behaves in the case of (second order) nonstationarity. To obtain the asymptotic limit of bCT (r, `)

we use the rescaling device introduced in Dahlhaus [1997], where it was used to develop and

study the class of locally stationary time series. More precisely, we consider the class of lo-

cally stationary processes {Xt,T}, whose covariance structure changes slowly over time such

that there exist smooth functions {r;·}r which can approximate the time-varying covariance,

i.e., |cov(Xt,T , Xt+h,T ) � h; t
T
|  T�1⇢h, where {⇢h} is such that

P

h |h⇢h| < 1 (see Dahlhaus

[2012]). Further, we define the time-dependent spectral density Fu(!) = 1

2⇡

P

h2Z h;ue�ih!.

Under this set-up we have bCT (r, `)
P! A(r, `), where

A(r, `) =
1

2⇡

Z

2⇡

0

Z

1

0

Fu(!)

f(!)
exp(�i2⇡ru) exp(i`!)dud! (6)

and f(!) =
R

1

0

Fu(!)du. Note that in the case of stationarity, Fu does not depend on u such that

the right hand side of (6) simplifies to get A(r, `) = 0 for all r 2 Z, r 6= 0. This corresponds to eTm

converging to a chi-squared distribution under the null. Although all theoretical investigations

under the alternative have been done for the broad, but still restrictive class of locally stationary

processes, tests based on (sums or maxima of) { bCT (r, `); r = 1, . . . ,m, ` = 1, . . . , L} are shown
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to have non-trivial power also for other types of nonstationarity as e.g. unit root processes or

processes with structural breaks; compare Section 6.2 in Jentsch and Subba Rao [2015].

2.2 Testing for spatial stationarity

In Bandyopadhyay and Subba Rao [2016] our objective is to test for spatial stationarity for a spa-

tial random process {Z(s); s 2 Rd}, observed only at a finite number of irregularly spaced loca-

tions, denoted as {sj}nj=1

, in the region [��/2,�/2]d, i.e., we observe {(sj, Z(sj)); j = 1, . . . , n}.
We mention that we do not require that the locations sj lie on a d-dimensional square centered

at zero. The same procedure, described below, applies if the locations sj are centered about

another location u; there is no need to centralize the locations. Furthermore, the locations need

not lie on a d-dimensional square and a d-dimensional rectangle is su�cient. However, it is not

possible to relax this assumption to an irregular domain. This is because on a rectangle domain,

the Fourier transform of a constant function is zero at all but the zeroth frequency. This prop-

erty is fundamental to the testing procedure. But on irregular domains this property will not

necessarily hold. If in practice the data lies on an irregular domain the largest rectangular subset

must be used when testing for stationarity. Suppose {Z(s); s 2 Rd} is spatially (second order)

stationary and denote c(v) = cov[Z(s), Z(s+ v)]. Analogous to the stationarity test for a time

series described in Section 2.1 we test for spatial stationarity by checking for uncorrelatedness

of the Fourier transforms. We note that the DFT of a discrete time time series (as described

above) is a linear one-to-one transformation between the time series in the time domain to the

frequency domain that can be easily inverted using the inverse DFT. On the other hand, when

the locations are irregularly spaced, i.e. they are not on an equidistant grid on [��/2,�/2]d,

there is no unique way to define the Fourier transform. Instead to test for stationarity, we use

a suitable Fourier transform for irregularly sampled data which retains the near uncorrelated

property. More precisely, we define the Fourier transform as Jn(⌦) = �d/2

n

Pn
j=1

Z(sj) exp(is0j⌦)

where ⌦ 2 Rd (this Fourier transform was first defined in Matsuda and Yajima [2009] and

Bandyopadhyay and Lahiri [2009]). Note that the factor �d/2

n ensures that the variance of Jn(⌦)

is non-degenerate when we let � ! 1. Contrary to the time series case, we use ⌦ instead of !

for spatial frequencies as we make use of both notations later for spatio-temporal processes in

Section 3.

Under the condition that the locations {sj} are independent and uniformly distributed ran-

dom variables on [��/2,�/2]d and {Z(s); s 2 Rd} is a fourth order stationary process (with

suitable short memory conditions), Bandyopadhyay and Subba Rao [2016] shows that the Fourier

transform at the ordinates ⌦k = 2⇡(k1� , . . . ,
kd
� )

0, k = (k
1

, . . . , kd) 2 Zd, i.e., {Jn(⌦k)}’s are ‘near
uncorrelated’ random variables. For their variances, we have var[Jn(⌦k)] = f(⌦k) +O( 1� +

�d

n ),

where f(⌦) =
R

Rd c(s) exp(�is0⌦)d⌦ is the spectral density function of the spatial process. So

far the results are very similar to those in time series, however, because the spatial process is de-

fined over Rd and not over Zd, the spectral density f(⌦) is defined over Rd. For the same reason,
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f is no longer an infinite sum, but becomes an integral. Furthermore, |f(⌦)| ! 0 as k⌦k
2

! 1,

where k · k
2

denotes the Euclidean norm (since the spatial covariance decays to zero su�ciently

fast, c(·) 2 L
2

(Rd) and thus by Parseval’s inequality f 2 L
2

(Rd)). Therefore, 1/
p

f(⌦) is not a

well defined function for all ⌦ 2 Rd and unlike the discrete time series case, the standardized

Fourier transform Jn(⌦k)/
p

f(⌦k) is not a well defined quantity at all frequencies. Instead,

to measure the degree of correlation between DFTs, we have to avoid standardization and we

define the weighted covariance between the (non-standardized) Fourier transforms as

bA�(g; r) =
1

�d

a
X

k1,...,kd=�a

g(⌦k)Jn(⌦k)Jn(⌦k+r)

�


1

n2

a
X

k1,··· ,kd=�a

g(⌦k)
n
X

j=1

Z2(sj) exp(�is0j⌦r)

�

, (7)

where, r 6= 0, r = (r
1

, . . . , rd)0 2 Zd (with k and k + r defined analogously), g is a given

Lipschitz continuous function with sup⌦2Rd |g(⌦)| < 1 and a satisfies (�a)d/n2 ! 0. In order

to avoid the so called ‘nugget e↵ect’ where the observations are corrupted by measurement error

(typically independent noise) we have subtracted the variance-type term in the definition of (7).

We give some examples of functions g below.

Remark 2.1 Examples of g used in Bandyopadhyay and Subba Rao [2016] are functions of

the form g(⌦) = eiv
0⌦, which is geared towards detecting changes in the spatial covariance at

lag v. However, unlike the case of regularly spaced locations, where we can detect changes at

integer lags, it is unclear which lags to use. For this reason in Bandyopadhyay and Subba Rao

[2016] we choose g(·) such that it can detect the aggregate change over L lags, namely g(⌦) =
PL

j=1

exp(iv0
j⌦) (where {vj} is some grid within the main support of the covariance). We should

note that g(·) is similar to the weight function ei`![ bfT (!) bfT (! + !r)]�1/2 used in the definition

of bCT (r, `) in (2).

The sampling results are derived under the mixed asymptotic framework, where � ! 1 and

�d/n ! 0, i.e., as the spatial domain grows, the number of observations should become denser

on the spatial domain (see, Hall and Patil [1994], Lahiri [2003], Matsuda and Yajima [2009],

Bandyopadhyay and Lahiri [2009], and Bandyopadhyay et al. [2015]). Under this mixed asymp-

totic framework and under the null of second order stationarity, we show in Theorem 3.1 of

Bandyopadhyay and Subba Rao [2016], that

E
h

bA�(g; r)
i

=

(

O
⇣

1

�d�b

Qd�b
j=1

(log �+ log |mj|)
⌘

, r 2 Zd/{0}
1

(2⇡)d

R

⌦2Rd f(⌦)g(⌦)d⌦+O
�

log �
� + 1

n

�

, r = 0

where ad = O(n), a/� ! 1 as n ! 1 and � ! 1, b = b(r) are the number of zero values in
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the vector r, {mj} are the non-zero values in the vector r. Moreover, from Bandyopadhyay and

Subba Rao [2016], Section 3 (Theorem 3.3 treats the Gaussian case and the non-Gaussian case

can be found at the bottom of Section 3), we have under the null (and fourth order stationarity)

that

c�1/2
a,� �d/2

h

< bA�(g; r1),= bA�(g; r1), . . . ,< bA�(g; rm),= bA�(g; rm)
i0 D! N (0, I

2m) (8)

holds, as `�,a,n := log2 a
�

log a+log �
�

�

+ �d

n + ad�d

n2 + log

3 �
� ! 0, where

ca,� =
1

2(2⇡)d

Z

D
f 2(⌦)

⇣

|g(⌦)|2 + g(⌦)g(�⌦)
⌘

d⌦

+
1

2(2⇡)2d

Z

D2

f
4

(⌦
1

,⌦
2

,�⌦
2

)g(⌦
1

)g(⌦
2

)d⌦
1

d⌦
2

, (9)

D = [�2⇡a/�, 2⇡a/�]d and

f
4

(⌦
1

,⌦
2

,⌦
3

) =

Z

R3d

(s
1

, s
2

, s
3

)e�i(s01⌦1+s02⌦2+s03⌦3)ds
1

ds
2

ds
2

is the (spatial) tri-spectral density and (s
1

, s
2

, s
3

) = cum[Z(0), Z(s
1

), Z(s
2

), Z(s
3

)] is the

fourth order cumulant analogous to h1,h2,h3 in the time series case. We observe that unlike
bCT (r, `) (defined in (2)), even in the case that the random field is stationary and Gaussian,
bA�(g; r) is not asymptotically pivotal. This is because, unlike bCT (r, `), in the definition of
bA�(g; r) we could not standardize the Fourier transform Jn(⌦) such that f(⌦) crops up in the

asymptotics here. Therefore, even for Gaussian random fields, the variance ca,� needs to be

estimated and if the random field is non-Gaussian then ca,� additionally contains a function of

the fourth order spectral density.

In the following, we present an approach based on so-called orthogonal samples, as proposed

by Subba Rao [2015b] and used in Bandyopadhyay and Subba Rao [2016], to estimate com-

plicated variances. The expression for the variance, ca,�, given in (9), is rather unwieldy and

di�cult to estimate directly. For example, in the case that the random field is Gaussian, one can

estimate ca,� by replacing the integral with the sum
Pa

k=�a and the spectral density function

with periodogram |Jn(⌦k)|2 (see Bandyopadhyay et al. [2015], Lemma 7.5). However, in the

case that the process is non-Gaussian this is not possible. The following remark describes the

method of orthogonal samples, which can be used for both spatial and/or temporal data and it

is a simple consistent method for estimating the variance.

Remark 2.2 (Using orthogonal samples for variance estimation) Suppose that bAD(X)

is an estimator of A such that E[ bAD(X)] ! A and var[
p
D bAD(X)] = ⌫ holds, where D =

D(T,�) is an appropriate scaling factor such that var[
p
D bAD(X)] = O(1). Further, assume that

there exists a non-empty set B0 and a sample {
p
D bAD(X; j); j 2 B0} (which is not necessarily

9



real-valued) that satisfies

(i) {
p
D< bAD(X; j); j 2 B0}, {

p
D= bAD(X; j); j 2 B0} and bAD(X) are almost uncorrelated,

but

(ii) {
p
D bAD(X; j); j 2 B0} has mean almost zero and var[

p
D< bAD(X; r)] = ⌫ + o(1) and

var[
p
D= bAD(X; r)] = ⌫ + o(1).

Then we call {
p
D bAD(X; j); j 2 B0} an orthogonal sample associated with bAD(X). Based on

this, a strategy to estimate ⌫ is to define

b⌫ = b�2({
p
D bAD(X; j); j 2 B0}) = D

2|B0|
X

j2B0

h

(< bAD(X; j)� Ā)2 + (= bAD(X; j)� Ā)2
i

, (10)

and Ā = 1

2|B0|
P

j2B0 [< bAD(X; j) + = bAD(X; j)], where |B0| denotes the cardinality of the set

B0. Furthermore, if we have joint asymptotic normality (and independence)
p
D[ bAD(X) �

A, {< bAD(X; j),= bAD(X; j); j 2 B0}] D! N(0, ⌫I
2|B0|+1

), then we have

p
D
[ bAD(X)� A]p

b⌫

D! t
2|B0|�1

,

where tq denotes the t-distribution with q degrees of freedom. Hence, if an orthogonal sample

in the sense of above is available, this general method allows to estimate the variance of an

estimator and to quantify the uncertainty in the variance estimator.

In the testing procedures described in this paper we make frequent use of the method of

orthogonal samples. In the following, we describe how it is used in the spatial set-up. To imple-

ment a test for spatial stationarity, we define a set S 2 Zd that surrounds but does not include

zero (examples include S = {(1, 0), (1, 1), (0, 1), (�1, 1)}) and test for stationarity using the co-

e�cients, { bA�(g; r); r 2 S}. Of course, the variance ca,� is unknown and needs to be estimated

from the data. To estimate the variance, we observe from (8) that (a) < bA�(g; r) and = bA�(g; r)

have the same variance and (b) for all r ‘close’ to zero the variance of {< bA�(g; r),= bA�(g; r)}
is approximately the same. This property allows us to use the orthogonal sample method de-

scribed in Remark 2.2 to estimate the variance. We define a set S 0 2 Zd which is relatively

‘close’ to S, but S \S 0 = ;. We note that for each element in {< bA�(g; r),= bA�(g; r); r 2 S} the

set
p
�d{< bA�(g; r),= bA�(g; r); r 2 S 0} can be considered as its orthogonal sample (where we set

S 0 = B0), since conditions (i) and (ii) in Remark 2.2 are satisfied. Thus we estimate ca,� using

bca,�(S 0) := b�2({�d/2
bA�(g; r); r 2 S 0}), where b�2(·) is defined in (10). Using bca,�(S 0) and (8) we

10



have

�d/2< bA�(g; r)
p

bca,�(S 0)

D! Z
1,r

q

1

2|S0|�1

�2

2|S0|�1

⇠ t
2|S0|�1

and �d/2= bA�(g; r)
p

bca,�(S 0)

D! Z
2,r

q

1

2|S0|�1

�2

2|S0|�1

⇠ t
2|S0|�1

,

(11)

for r 2 S with �d/n ! 0 as n ! 1 and � ! 1 (so called mixed domain asymptotics),

where {Z
1,r, Z2,r; r 2 S} are iid standard normal random variables and �2

2|S0|�1

is a chi-

squared distributed random variable (with 2|S 0| � 1 degrees of freedom) which is the same

for all r 2 S, but independent of {Z
1,r, Z2,r; r 2 S}. A test statistic can then be defined as

maxr2S [| bA�(g; r)|2/bca,�(S 0)], whose limiting distribution can easily be obtained from (11). Note

that a test statistic based on the sum of squares rather than the maximum is also possible,

however in terms of simulations the maximum statistic tends to have slightly better power.

Just as in the nonstationary time series case, in order to obtain the limit of bA�(g; r) in the

nonstationary spatial case, we use rescaled asymptotics. We define a sequence of nonstationary

spatial processes {Z�(s)} (we use the term ‘sequence’ loosely, since � is defined on R+ and not

on Z+), where for each � > 0 and s 2 [��/2,�/2]d the covariance of {Z�(s)} is

cov[Z�(s), Z�(s+ v)] = 
⇣

v;
s

�

⌘

,

where  : Rd ⇥ [�1/2, 1/2]d ! R (note that s 2 [��/2,�/2]d) is the location-dependent co-

variance function. The corresponding location-dependent spectral density function is defined

as

F
⇣

⌦;
s

�

⌘

=

Z

Rd


⇣

v;
s

�

⌘

exp(�i2⇡v0⌦)dv.

Under this set-up we have bA�(g; r)
P! A(g; r) as � ! 1 where

A(g; r) =
1

(2⇡)d

Z

Rd

Z

[�1/2,1/2]d
F (⌦;u) exp (�i2⇡u0r) g(⌦)dud⌦.

We observe that if in the test we let g(⌦) = exp(iv0⌦) then A(eiv·; r) is the Fourier coe�cient

of
R

[�1/2,1/2]d (v;u) exp(�ir0u)du. Hence the test is geared towards detecting changes in the

covariance at lag v.

3 Properties of spatio-temporal Fourier transforms

We now use some of the ideas discussed in the previous section to test for stationarity of a spatio-

temporal process. Let us suppose that {Zt(s); s 2 Rd, t 2 Z} is a spatio-temporal process which

is observed at time t = 1, . . . , T and at locations {sj}nj=1

on the region [��/2,�/2]d. At any

11



given time point, t, we may not observe all {sj}nj=1

locations, but only a subset {st,j}nt
j=1

, i.e.,

the data set we observe is {Zt(st,j); j = 1, . . . , nt, t = 1, . . . , T}.
Throughout this paper we will use the following set of assumptions.

Assumption 3.1

(i) {sj} are iid uniformly distributed random variables on the region [��/2,�/2]d.

(ii) The number of locations that are observed at each time point is nt, where for some 0 <

c
1

 c
2

< 1 (this does not change with n) we have c
1

n  nt  c
2

n.

(iii) The asymptotics are mixed, that is as � ! 1 (spatial domain grows), we have n ! 1
(number of locations grows) such that �d/n ! 0. We also assume that T ! 1.

In much of the discussion below we restrict ourselves to the case r
2

2 {0, 1, . . . , T/2 � 1}, but
allow r

1

2 Zd.

Throughout the following, let ⌦k = 2⇡(k
1

/�, . . . , kd/�), where k = (k
1

, . . . , kd) 2 Zd denote

spatial frequencies and !k = 2⇡k/T denote temporal frequencies. Keeping time or location fixed,

respectively, we define the Fourier transform over space at time t as

Jt(⌦k) =
�d/2

nt

nt
X

j=1

Zt(st,j) exp(is
0
t,j⌦k),

and the Fourier transform over time at location sj as

Jsj(!k) =
1p
2⇡T

T
X

t=1

n

nt
�t,jZt(sj)e

it!k ,

where, �t,j = 0 if at time t the location sj is not observed, otherwise �t,j = 1. Observe that the

ratio n/nt gives a large weight to time points where there are only a few observed locations. We

then define the spatio-temporal Fourier transform, i.e., the Fourier transformation over space

and time as

J(⌦k1 ,!k2) =
1p
2⇡T

T
X

t=1

Jt(⌦k1) exp(it!k2) =
�d/2

n

n
X

j=1

Jsj(!k2) exp(is
0
j⌦k1). (12)

Our objective is to test for second order stationarity of the spatio-temporal process, in the

sense that cov[Zt(s), Zt+h(s + v)] = h(v). In the remainder of this section we evaluate the

covariance cov [J(⌦k1 ,!k2), J(⌦k1+r1 ,!k2+r2)] under all combinations of temporal and spatial

stationarity and nonstationarity, respectively. This will motivate the testing procedures pro-

posed in Section 4.
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We first note there is a subtle but important di↵erence between the spectral density over

time and space. Under second order stationarity in space and time of Zt(s) the spectral density

is

f(⌦,!) =
1

2⇡

X

h2Z

e�ih!

Z

Rd

h(v) exp(�iv0⌦)dv,

where the equality above is due to h(v) = �h(�v). We observe that f : Rd ⇥ [0, 2⇡] ! R,
that is, f(·,!) is defined on Rd (this is because the spatial process is defined over Rd) whereas

f(⌦, ·) is a periodic function defined on the interval [0, 2⇡] (because the temporal process is over

discrete time Z). The space-time spectral density of the type defined above is studied in detail

in Subba Rao and Terdik [2016].

To understand how the correlations between the Fourier transforms behave in the case that

the spatio-temporal process is nonstationary we will use the rescaling devise discussed in Sec-

tions 2.1 and 2.2. To be able to apply the rescaling devise in space and time, we assume that the

‘observed’ process Zt(s) is an element of a sequence (indexed over � and T ) of nonstationary

spatio-temporal processes {Zt,�,T (s); t 2 Z, s 2 Rd}, i.e., Zt(s) = Zt,�,T (s). Using this formu-

lation we can then place certain regularity conditions on the covariance. To do so, we define

the sequence {⇢h}, such that
P

h |h⇢h| < 1 and function �⌘(v), such that for some ⌘ > 0,

�⌘(v) =
Qd

j=1

�⌘(vj) with

�⌘(vj) =

(

C |vj|  1

C|vj|�⌘ |vj| > 1
(13)

for some finite constant C. We assume there exists a time and location dependent spatio-

temporal covariance, h;u : Rd ⇥ [�1/2, 1/2]d ! R, such that for all T 2 Z+, � > 0, h 2 Z and

u 2 [0, 1], we have

cov[Zt,�,T (s), Zt+h,�,T (s+ v)] = h; t
T

⇣

v;
s

�

⌘

+O

✓

⇢h�2+�(v)

T

◆

. (14)

The function ·(·) satisfies the Lipschitz conditions: (i) supu,u |h;u(v;u)|  ⇢h�2+�(v), (ii)

supu |h;u1 (v;u)�h;u2 (v;u) |  |u
1

�u
2

|⇢h�2+�(v) and (iii) supu |h;u (v;u1

)�h;u (v;u2

) | 
||u

1

�u
2

||
2

⇢h�2+�(v). Note that the index h; t/T refers to covariance at time lag h and rescaled

time t/T whereas (v; s/�) refers to spatial covariance “lag” v and rescaled location s/�. Using

the above definitions we define the time and location dependent spectral density as

Fu(⌦,!;u) =
1

2⇡

X

h2Z

e�ih!

Z

Rd

h;u(v;u)e
�iv0⌦dv. (15)

In the proposed testing procedure we also consider one-way stationarity tests, where we test
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for stationarity over one domain without assuming stationarity over the other domain. To

understand how these tests behave, we use the following rescaling devises:

• Spatial stationarity and temporal nonstationarity

In this case, we assume that Zt(s) = Zt,T (s) and there exists a  such that

cov[Zt(s), Zt+h(s+ v)] = h; t
T
(v) +O(⇢h�2+�(v)T

�1).

The corresponding time-dependent spectral density is F t
T
(⌦,!) (defined analogously to

(15)).

• Temporal stationarity and spatial nonstationarity

In this case we assume Zt(s) = Zt,�(s) and there exists a  such that

cov[Zt(s), Zt+h(s+ v)] = h

⇣

v;
s

�

⌘

with corresponding location dependent spectral density F (⌦,!; s
�).

In the following lemma we derive the properties of the DFT for the four di↵erent combinations

of temporal and spatial stationarity and nonstationarity, respectively.

Lemma 3.1 Suppose Assumption 3.1 is satisfied. We further assume that under spatial and

temporal stationarity |h(v)|  ⇢h�2+�(v), temporal stationarity supu |h(v;u)|  ⇢h�2+�(v),

spatial stationarity supu |h;u(v)|  ⇢h�2+�(v) and temporal and spatial nonstationarity supu,u |h;u(v;u)| 
⇢h�2+�(v) with �

2+�(v) and {⇢h} as defined in (13). Let b = b(r) denote the number of zero

entries in the vector r.

(i) If the process {Zt(s); s 2 Rd, t 2 Z} is spatially and temporally stationary, we have

cov [J(⌦k1 ,!k2), J(⌦k1+r1 ,!k2+r2)]

=

8

>

>

>

>

>

<

>

>

>

>

>

:

f(⌦k1 ,!k2) +O
⇣

1

T + 1

� + �d

n

⌘

r
1

= 0 and r
2

= 0

O
⇣

1

T + �d

n

⌘

r
1

= 0 and r
2

6= 0

O
�

1

�d�b

�

r
1

6= 0 and r
2

= 0

O
�

1

T�d�b

�

r
1

6= 0 and r
2

6= 0.

(ii) If the process is spatially stationary and temporally nonstationary, we have

cov [J(⌦k1 ,!k2), J(⌦k1+r1 ,!k2+r2)]

=

(

R

1

0

Fu(⌦k1 ,!k2) exp(�i2⇡r
2

u)du+O
⇣

1

T + �d

n

⌘

r
1

= 0 and r
2

2 Z
O
�

1

�d�b +
1

T

�

r
1

6= 0 and r
2

2 Z

14



(iii) If the process is spatially nonstationary and temporally stationary, we have

cov [J(⌦k1 ,!k2), J(⌦k1+r1 ,!k2+r2)]

=

(

R

[�1/2,1/2]d exp(�i2⇡r0
1

u)F (⌦k1 ,!k2 ;u)du+O
�

1

T + 1

�

�

r
2

= 0 and r
1

2 Zd

O
�

1

T

�

r
2

6= 0 and r
1

2 Zd

(iv) If the process is spatially and temporally nonstationary, we have

cov [J(⌦k1 ,!k2), J(⌦k1+r1 ,!k2+r2)]

=

Z

1

0

exp(�i2⇡r
2

u)

Z

[�1/2,1/2]d
exp(�i2⇡r0

1

u)Fu(⌦k1 ,!k2 ;u)dudu+O

✓

1

�
+

1

T
+

�d

n

◆

.

In the above lemma we see that if the process is stationary then for non-zero values of r
1

or

r
2

the covariance between the DFTs is close to zero. On the other hand, when the process is

nonstationary the correlation is non-zero. In particular, cov [J(⌦k1 ,!k2), J(⌦k1+r1 ,!k2+r2)] is

approximately equal to the Fourier coe�cient br2(⌦k1 ,!k2 ; r1), where

br2(⌦,!; r
1

) =

Z

1

0

exp(�i2⇡r
2

u)

Z

[�1/2,1/2]d
exp(�i2⇡r0

1

u)Fu(⌦,!;u)dudu. (16)

We note that Fu(⌦,!;u) =
P

r12Zd

P

r22Z br2(⌦,!; r
1

)e2⇡i(r
0
1u+r2u). Therefore, in the case the

spatio-temporal process is stationary, for all r
1

6= 0 or r
2

6= 0 we have br2(⌦,!; r
1

) = 0 and for

all u and u, Fu(⌦,!;u) = b
0

(⌦,!;0) = f(⌦,!) holds.

However, in the nonstationary case we have:

• Spatial stationarity, but temporal nonstationarity

For all r
1

6= 0, br2(⌦,!; r
2

) = 0. But for at least some r
2

6= 0 and [⌦,!] 2 Rd ⇥ [0, 2⇡]

(measure non-zero), br2(⌦,!; 0) 6= 0. In other words, the temporal nonstationarity is ‘seen’

on the r
2

-axis.

• Temporal stationarity, but spatial nonstationarity

For all r
2

6= 0, br2(⌦,!; r
2

) = 0. But for at least some r
1

6= 0 and [⌦,!] 2 Rd ⇥ [0, 2⇡]

(measure non-zero), b
0

(⌦,!; r
1

) 6= 0. In other words, the spatial nonstationarity is ‘seen’

on the r
1

-axis.

• Temporal and spatial nonstationarity

For at least some r
1

6= 0 and r
2

6= 0 and [⌦,!] 2 Rd ⇥ [0, 2⇡] (measure non-zero), we have

br2(⌦,!; r
1

) 6= 0.

Using this dichotomy between stationary and nonstationary processes, our proposed test for

stationarity is based on estimates of br2(⌦,!; r
1

). However, it is not feasible to test over all
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(r
1

, r
2

) 2 Zd+1. Instead, we note that since
R

1

0

R

[�1/2,1/2]d |Fu(⌦,!;u)|2dudu < 1, we have
P

r1,r2
|br2(⌦,!; r

1

)|2 < 1. Therefore |br2(⌦,!; r
1

)| ! 0 as kr
1

k ! 1 or |r
2

| ! 1. Thus a

test based on br2(⌦,!; r
1

) should use (r
1

, r
2

) which are close to the origin (where the deviations

from zero are likely to be largest, thus leading to maximum power), from now onwards we denote

this test set as P = S ⇥ T .

For a given (r
1

, r
2

), one possibility is to simply estimate br2(⌦,!; r
1

) for all ⌦ and !. There-

fore, if br2(⌦,!; r
1

) is non-zero for some values ⌦,! of non-zero measure, the test will (asymp-

totically) have power. However, the drawback of a such an omnipresent test is that it has very

little power for small deviations from stationarity (i.e., when br2(⌦,!; r
1

) is small). Therefore in

the following section we propose two di↵erent testing approaches. The first estimates a weighted

integral of br2(⌦,!; r
1

), that is

Ag,h(r1, r2) = hbr2(·, ·; r1), g(·)h(·)i =
1

(2⇡)d⇡

Z ⇡

0

Z

Rd

g(⌦)h(!)br2(⌦,!; r
1

)d⌦d!,

for a given set of (weight) functions g : Rd ! R and h : [0, ⇡] ! R. This test has the most

power for small deviations from stationarity - but they have to be in a direction that Ag,h is

non-zero. The second testing method is a compromise, between the omnipresent test and the

above test. In this test we estimate

Dg,h,v(r1, r2) =
1

⇡

Z ⇡

0

v(!)



h(!)

(2⇡)d

Z

Rd

g(⌦)br2(⌦,!; r
1

)d⌦

�

2

d! (17)

for a given set of functions g, h and v. This test uses g(⌦) to set the spatial features it wants

to detect, but the sum of squares over all frequencies ! means that it can detect for deviations

from temporal stationarity at all frequencies !.

4 The spatio-temporal test for stationarity

In this section we focus on testing for stationarity of a spatio-temporal process. In Section 5 we

adapt these methods to testing for one-way stationarity of a spatio-temporal process.

4.1 Measures of correlation in the Fourier transforms

Our aim is to test for second order stationarity by measuring the linear dependence between

the Fourier transforms. To do this, we recall that the test for spatial stationarity is a sum of

(weighted) sample autocovariances of {J(⌦k)} (see (7)). We now define an analogous quantity to

test for spatio-temporal stationarity. We start by defining the weighted sample cross-covariance
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between {J(⌦k1 ,!k2)} and {J(⌦k1+r1 ,!k2+r2)} over k
1

(but with k
2

kept fixed)

bag(!k2 ; r1, r2) =
1

�d

a
X

k1=�a

g(⌦k1)J(⌦k1 ,!k2)J(⌦k1+r1 ,!k2+r2)�NT

=
1

n2

a
X

k1=�a

g(⌦k1)
n
X

j1,j2=1

j1 6=j2

Jsj1 (!k2)Jsj2 (!k2+r2) exp(isj1⌦k1 � isj2⌦k1+r1), (18)

and g : Rd ! R is a user chosen bounded Lipschitz continuous function (see Remark 2.1), a is

such that (a�)d/n2 ! 0, where the last line follows from (12) and

NT =
1

n2

a
X

k1=�a

g(⌦k1)
n
X

j=1

Jsj(!k2)Jsj(!k2+r2) exp(�isj⌦r1) (19)

=
1

2⇡T

a
X

k1=�a

g(⌦k1)
T
X

t,⌧=1

eit!k2
�i⌧!k2+r1

1

ntn⌧

n
X

j=1

�t,j�⌧,jZt(sj)Z⌧ (sj) exp(�isj⌦r1).

Our reason for removing the term NT are two fold; the first is to remove the so called nugget

e↵ect which arises due to measurement error in the spatial observations, the second reason is

that NT tends to inflate the variance of bag(·) (removing such a term is quite common in spatial

statistics, see Matsuda and Yajima [2009], Subba Rao [2015a] and Bandyopadhyay et al. [2015]).

Remark 4.1 An alternative choice of NT is

NT =
1

2⇡T

a
X

k1=�a

g(⌦k1)
T
X

t=1

exp(�it!r2)
1

n2

t

n
X

j=1

�t,jZ
2

t (sj) exp(�isj⌦r1).

Examples of weight functions g(·) are given in Remark 2.1. We will show in Lemma 4.1 that in

many ways the sampling properties of �d/2
bag(!k2 ; r1, r2) resemble the temporal DFT covariance

JT (!k)JT (!k+r); compare Section 2.1. To prove this result we require the following assumptions.

Assumption 4.1 Suppose {Zt(u);u 2 Rd, t 2 Z} is a fourth order stationary spatio-temporal

process. Let h1,h2,h3(v1

,v
2

,v
3

) = cum[Zt(s), Zt+h1(s + v
1

), Zt+h2(s + v
2

), Zt+h3(s + v
3

)] and

define the functions

fh(⌦) =

Z

Rd

h(v) exp(�iv0⌦)du, and

fh1,h2,h3(⌦1

,⌦
2

,⌦
3

) =

Z

Rd

h1,h2,h3(v1

,v
2

,v
3

) exp(�iv0
1

⌦
1

� iv0
2

⌦
2

� iv0
3

⌦
3

)dv
1

dv
2

dv
3

.

(i) fh(·) satisfies
R

Rd |fh(⌦)|d⌦  ⇢h,
R

Rd |fh(⌦)|2d⌦  ⇢h and fh(⌦)  ⇢h�1+�(⌦).

17



(ii) For all 1  j  d, the partial derivatives satisfy |@fh(⌦)

@⌦j
|  ⇢h�1+�(⌦), where ⌦ =

(⌦
1

, . . . ,⌦d).

(iii) |fh1,h2,h3(⌦1

,⌦
2

,⌦
3

)| < ⇢h1⇢h2⇢h3

Qd
j=1

�
1+�(⌦1,j)

Qd
j=1

�
1+�(⌦2,j)

Qd
j=1

�
1+�(⌦3,j) and for

1  i  3 and 1  j  d,

�

�

�

�

@fh1,h2,h3(⌦1

,⌦
2

,⌦
3

)

@⌦i,j

�

�

�

�

 ⇢h1⇢h2⇢h3

d
Y

j=1

�
1+�(⌦1,j)

d
Y

j=1

�
1+�(⌦2,j)

d
Y

j=1

�
1+�(⌦3,j).

In the results below we also require the fourth order spectral density

f
4

(⌦
1

,!
1

,⌦
2

,!
2

,⌦
3

,!
3

) =
1

(2⇡)3

X

h1,h2,h32Z

fh1,h2,h3(⌦1

,⌦
2

,⌦
3

)e�ih1!1�ih2!3�ih3!3 .

4.1.1 Sampling properties of bag(·) under stationarity

Below we derive the mean, variance and asymptotic normality of bag(·) from (18) under the

assumption that the spatio-temporal process is fourth order stationary.

Lemma 4.1 Suppose Assumptions 3.1 and 4.1 hold. In addition, | @dfh(⌦)

@⌦1...@⌦d
|  ⇢h�1+�(⌦) (see

the proof of Theorem 3.1, Subba Rao [2015a]). Then

E [bag(!k; r1, r2)]

=

8

>

>

>

>

>

<

>

>

>

>

>

:

O
⇣

1

T�d�b

Qd�b
j=1

(log �+ log |mj|)
⌘

r
1

2 Zd/{0} and r
2

6= 0

O
⇣

1

�d�b

Qd�b
j=1

(log �+ log |mj|)
⌘

r
1

2 Zd/{0} and r
2

= 0

O
�

1

T

�

r
1

= 0 and r
2

6= 0
1

(2⇡)d

R

⌦2Rd g(⌦)f(⌦,!k)d⌦+O
�

log �
� + 1

n

�

r
1

= 0 and r
2

= 0

,

where b = b(r
1

) denotes the number of zeros in the vector r
1

and {mj}d�b
j=1

are the non-zero

values in r
1

.

Lemma 4.2 Suppose Assumptions 3.1 and 4.1 hold and r
2

, r
4

are such that 0  r
2

, r
4

 T/2.

Then we have,

�dcov [<bag(!k2 , r1, r2),<bag(!k4 , r3, r4)]

= Ir1=r3Ir2=r4



Ik2=k4Vg(!k2 ;⌦r1 ,!r2) + Ik4=T�k2�r2Vg,2(!k2 ;⌦r1 ,!r2) +O

✓

1

T

◆�

+O

✓

`�,a,n

◆

, (20)

18



where

Vg(!;⌦r1 ,!r2) =
1

2(2⇡)d

Z

D
g(⌦)g(⌦)f(⌦,!)f(⌦+⌦r1 ,! + !r2)d⌦,

Vg,2(!;⌦r1 ,!r2) =
1

2(2⇡)d

Z

Dr1

g(⌦)g(�⌦�⌦r1)f(⌦,�!)f(�⌦�⌦r1 ,! + !r2)d⌦,

and
R

Dr1
=
R

2⇡min(a,a�r1,1)/�

2⇡max(�a,�a�r1,1)/�
. . .
R

2⇡min(a,a�r1,d)/�

2⇡max(�a,�a�r1,d)/�
. Note that `�,a,n and

R

D are defined in

Section 2.2. Exactly the same result as in (20) holds for �dcov [=bag(!k2 , r1, r2),=bag(!k4 , r3, r4)],

whereas �dcov [<bag(!k2 , r1, r2),=bag(!k4 , r3, r4)] = O(`�,a,n +
Ir1=r3Ir2=r4

T ).

Let {(kj, r1, r2); 1  j  m, (r
1

, r
2

) 2 P and kj1 6= T � kj2 � r
2

} be a collection of integer

vectors. Then under su�cient mixing conditions of {Zt(s)} we have

�d/2

"(

<bag(!kj ; r1, r2)
p

Vg(!kj ;⌦r1 ,!r2)
,

=bag(!kj ; r1, r2)
p

Vg(!kj ;⌦r1 ,!r2)
; 1  j  m, (r

1

, r
2

) 2 P
)#

D! N
�

0, I
2m|P|

�

,

as �d/n ! 0, n ! 1, � ! 1 and T ! 1.

We observe that for kr
1

k
2

<< � and |r
2

| << T and by the smoothness of the spectral density

f and tri-spectral density f
4

, we have

Vg(x1

;⌦r1 ,!r2) = Vg(x2

) +O (|x
1

� x
2

|+ |⌦r1 |+ |!r2 |) , (21)

where Vg(x) = Vg(x; 0, 0). We use these approximations in Sections 4.2.1 and 4.3.1.

The lemmas above show that bag(!; r1, r2) is estimating zero in the case that the spatio-

temporal process is fourth order stationary. We observe that the variance of bag(!k; r1, r2) does

not involve Vg,2(·). Therefore, in the definition of the test statistic, in Section 4.2 we average

bag(!k; r1, r2) over the frequencies {!k}T/2k=1

. This is to avoid correlations between bag(!k; r1, r2)

and bag(!T�k�r2 ; r1, r2) and thus the need to estimate Vg,2.

In the section below we show that bag(!; r1, r2) behaves di↵erently in the case that the spatio-

temporal process is nonstationary.

4.1.2 Sampling properties of ag(·) under nonstationarity

Using the rescaled asymptotic set-up described in Section 3 and the assumptions in Lemma 3.1

we can show that under the alternative of nonstationarity

E [bag(!k; r1, r2)] = bg,r2(!; r1) +O

✓

�d

n
+

1

�
+

1

T

◆

,

where

bg,r2(!; r1) = hg, br2(·,!; r1)i =
1

(2⇡)d

Z

Rd

g(⌦)br2(⌦,!; r
1

)d⌦ (22)

19



and br2(·,!; r1) is defined in (16). Therefore, we see that if the process is nonstationary,

bag(!k; r1, r2) is, in some sense, measuring the nonstationarity at frequency (r
1

, r
2

) in the spec-

trum.

4.2 Test statistic 1: The average covariance

Motivated by the results above we define the average covariance. To do so, we first note that

Lemma 4.2 above shows that there is a ‘significant’ correlation between <bag(!k; r1, r2) and

<bag(!T�k�r2 ; r1, r2) (and likewise for the imaginary parts). Therefore we restrict the summands

below to the frequencies 1, . . . , T/2 to ensure the elements of the sum are mostly near uncorre-

lated. We define the weighted sum as

bAg,h(r1, r2) =
2

T

T/2
X

k=1

h(!k)bag(!k; r1, r2), (23)

for given (user-chosen) weight functions g and h. The sampling properties of bAg,h(r1, r2) are

given in Lemma 7.1. Summarizing Lemma 7.1, the variances are

var

 

r

�dT

2
< bAg,h(r1, r2)

!

= Vg,h + o(1) and var

 

r

�dT

2
= bAg,h(r1, r2)

!

= Vg,h + o(1) (24)

and

s

�dT

2Vg,h

⇣n

< bAg,h(r1, r2),= bAg,h(r1, r2); (r1, r2) 2 eP
o⌘

D! N (0, I
2| eP|) (25)

as `�,a,n ! 0 with � ! 1 and T ! 1, where

Vg,h =
1

2⇡

Z ⇡

0

|h(!)|2Vg(!)d!

+
2

(2⇡)d+2

Z ⇡

0

Z ⇡

0

Z

D2

g(⌦
1

)g(⌦
2

)h(!
1

)h(!
2

)f
4

(⌦
1

,!
1

,⌦
2

,!
2

,�⌦
2

,�!
2

)

d⌦
1

d⌦
2

d!
1

d!
2

. (26)

Therefore, based on the above we can use an L
2

or max norm as the test statistic, i.e.

�dT

2Vg,h

X

(r1,r2)2P

| bAg,h(r1, r2)|2 or
�dT

2Vg,h
max

(r1,r2)2P
| bAg,h(r1, r2)|2,

which is asymptotically either a chi-square statistic or the maximum of chi-squares with 2 de-

grees of freedom. However, we stumble across a problem in that the variance Vg,h is generally

unknown. One solution to this is to use the method of orthogonal samples described in Sec-
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tion 2. We observe from (24) and (25) that if (r
1

, r
2

) is not too far from the origin, then

{ bAg,h(r1, r2); (r1, r2)}’s asymptotically have the same variance and are uncorrelated. Therefore,

we can estimate the variance using the elements in a suitable set P 0. We describe how to

construct sets P and P 0 below.

Definition 4.1 (The sets P and P 0) Let S and S 0 be similar to the sets defined in Section

2.2 (S and S 0 contain vectors in Zd). We define the temporal sets T = {1, . . . ,m} and T 0 =

{m + B
1

, . . . ,m + B
2

} where B
1

< B
2

(T and T 0 contain vectors in Z). Since bAg,h(r1, r2) is a

function of r
1

and r
2

we define the sets P = S ⇥ T and P 0 = S 0 ⇥ T 0. We place the following

constraints on the sets; 0 /2 P ,P 0, P \ P 0 = ;. Furthermore if (r
1

, r
2

), (r
3

, r
4

) 2 P or P 0, then

(r
1

, r
2

) 6= �(r
3

, r
4

). P and P 0 are such that for (r
1

, r
2

) 2 P 0, kr
1

k
2

<< �, |r
2

| << T .

P will be the set where we check for zero correlation and conduct the test and P 0 will be

the set which we use to estimate nuisance parameters. In order for the test statistics defined

below to be close to the nominal level, under the null of stationarity, the elements of P and P 0

should be ‘close’ (in the sense of some distance measure). However, in order for the test to have

maximum power (i) the test set P should surround zero and (ii) if P 0 is too ‘close’ to P it can

result in a loss of power. Further details can be found in Bandyopadhyay and Subba Rao [2016].

From the definition of P and P 0 given above we see that { bAg,h(r1, r2); (r1, r2); (r1, r2) 2 P 0}
satisfies the conditions of an orthogonal sample given in Remark 2.2. Thus we estimate Vg,h

with

bVg,h(P 0) = b�2

 

r

T�d

2
bAg,h(r1, r2); (r1, r2) 2 P 0

!

. (27)

and use either the L
2

-statistic T
1,g,h(P ,P 0) or the maximum statistic M

1,g,h(P ,P 0) as the test

statistic, where

T
1,g,h(P ,P 0) =

�dT

2

X

(r1,r2)2P

| bAg,h(r1, r2)|2
bVg,h(P 0)

and M
1,g,h(P ,P 0) =

�dT

2
max

(r1,r2)2P

| bAg,h(r1, r2)|2
bVg,h(P 0)

.

(28)

Asymptotically, under the null of stationarity we have

T
1,g,h(P ,P 0)

D! �2

2|P| and M
1,g,h(P ,P 0)

D! F|P|,

as |P 0| ! 1, T ! 1 and � ! 1, where F|P| is the distribution function of the maximum

of |P| i.i.d. exponentially distributed random variables with exponential parameter 1/2 (since

asymptotically under the null, (T�d/2)| bAg,h(r1, r2)|2/bVg,h(P 0) limits to an exponential distribu-

tion) and is defined as F|P|(x) =
|P|
2

exp(�x/2)(1 � exp(�x/2))|P|�1. Using this result we can

test for stationarity at the ↵⇥ 100%-level with ↵ 2 (0, 1).
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Remark 4.2 (The test under nonstationarity) Suppose that Zt(s) = Zt,�,T (s) is a nonsta-

tionary spatio-temporal process. Then by using the rescaling device defined in Section 3 we have
bAg,h(r1, r2)

P! Ag,h(r1, r2) as T ! 1, �d/n ! 0, � ! 1 and n ! 1, where

Ag,h(r1, r2) =
1

⇡(2⇡)d

Z ⇡

0

h(!)

✓

Z

Rd

g(⌦)br2(⌦,!; r
1

)d⌦

◆

d!

and br2(⌦,!; r
1

) is defined in (16).

We do not give the results of a formal local asymptotic analysis. However, suppose {µ(r
1

, r
2

)}
is a sequence where

P

r1,r2
|µ(r

1

, r
2

)|2 < 1 and

Ag,h(r1, r2) =
µ(r

1

, r
2

)

(T�d)1/2
.

If for some (r
1

, r
2

) 2 P, µ(r
1

, r
2

) 6= 0, then the test will have power.

Of course in order to define the test statistic, we need to choose g and h. A reasonable choice

of g(·) is given in Remark 2.1. The choice of h is more complex and below we discuss a choice

of h that seems to give reasonable results in the simulations.

4.2.1 Choice of h

If we let h(!) = exp(i`!), then the test is designed to check for nonstationarity only in the

spatio-temporal covariance at temporal lag `, i.e., `;u(·; s). Instead, we use a weight function

similar to the temporal test described in Section 2.1, where we recall that in the construction

of the temporal test statistic JT (!k)JT (!k+r)/
q

bfT (!k) bfT (!k+r)’s are near uncorrelated and
bCT (r, `) is pivotal in the case where the time series is stationary and Gaussian. Similarly, in

the construction of bAg,h(r1, r2) if we let h(!) = Vg(!)�1/2, where Vg(!) is defined in (21), we

have {<bag(!k; r1, r2)/
p

Vg(!k),=bag(!k; r1, r2)/
p

Vg(!k} are near uncorrelated, asymptotically

standard normal random variables. Thus we use h(!) =
p

Vg(!) to define bAg,V �1/2(r
1

, r
2

) as

bAg,V �1/2(r
1

, r
2

) =
2

T

T/2
X

k=1

bag(!k; r1, r2)
p

Vg(!k)
,

which we see from (26) has variance

Vg,V �1/2 =
1

2
+

2

(2⇡)d+2

Z ⇡

0

Z ⇡

0

Z

D2

g(⌦
1

)g(⌦
2

)
p

Vg(!1

)Vg(!2

)
f
4

(⌦
1

,!
1

,⌦
2

,!
2

,�⌦
2

,�!
2

)

d⌦
1

d⌦
2

d!
1

d!
2

.

We observe from the above that in the case the spatio-temporal process is stationary and Gaus-

sian, bAg,V �1/2(r
1

, r
2

) is asymptotically pivotal; compare with temporal stationarity test described
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in Section 2.2 where a similar result is true.

However, in general Vg(!) is unknown and needs to be estimated. To estimate Vg(!k) we use

the orthogonal sample method described in Remark 2.1 and the same set P 0 defined in (4.1).

Under these conditions we have that the real and imaginary parts of {bag(!k+i; r1, r2); (r1, r2) 2
P 0, |i|  M} for M << T , have almost the same variance and are near uncorrelated. Using this

we estimate Vg(!k) with

bVg(!k;P 0) = b�2

�

{�d/2
bag(!k+i; r1, r2); (r1, r2) 2 P 0, |i|  M}

�

, (29)

where b�2(·) is defined in (10). We define the observed average covariance as

bAg,bV �1/2(r
1

, r
2

) =
2

T

T/2
X

k=1

bag(!k; r1, r2)
q

bVg(!k;P 0)
.

By using the same methods described in Jentsch and Subba Rao [2015], Appendix A.2, we can

show that

�d/2T 1/2
�

� bAg,bV �1/2(r
1

, r
2

)� bAg,V �1/2(r
1

, r
2

)
�

�

P! 0,

with |M |/T ! 0 as M ! 1 and T ! 1. Hence bAg,bV �1/2(r
1

, r
2

) and bAg,V �1/2(r
1

, r
2

) share the

same asymptotic sampling properties. Thus by using (25) we have

s

�dT

2Vg,V �1/2

⇣n

< bAg,bV �1/2(r
1

, r
2

),= bAg,bV �1/2(r
1

, r
2

); (r
1

, r
2

) 2 P \ P 0
o⌘

D! N (0, I
2| eP|). (30)

Since for a given data set, we cannot be sure if the underlying process is Gaussian, we estimate

the variance of Vg,V �1/2 using the method in (34) and use the test statistics T
1,g,bV �1/2(P ,P 0) and

M
1,g,bV �1/2(P ,P 0) as defined in (28).

4.3 Test statistic 2: The average squared covariance

In the previous section we considered the average covariance for estimating the linear depen-

dence between the DFTs. As we can see from Remark 4.2 the average covariance is designed to

detect the frequency average deviation from stationarity. Of course by considering the frequency

average deviation, positive and negative frequency deviations can cancel leading to an average

deviation of zero, which would give the misleading impression of stationarity. To address this

issue we define a test statistic which estimates the average squared deviation over all frequen-

cies (and thus is designed to detect a wider range of alternatives). More precisely, we group
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{bag(!k; r1, r2)}T/2k=1

into blocks of length H and evaluate the local average over each block

bBg,h;H(!jH ; r1, r2) =
1

H

H
X

k=1

h(!jH+k)bag(!jH+k; r1, r2), for 0  j < T/(2H), (31)

where the length of block H is such that H/T as H ! 1 and T ! 1. For ease of notation

we assume that H is a multiple of T . This can be considered as a frequency localized version of
bAg,h(r1, r2) defined in the previous section. In Lemma 7.2 we show that

s

�dH

Wg,h(!jH)

⇣

< bBg,h;H(!jH ; r1, r2),= bBg,h;H(!jH ; r1, r2)
⌘

D! N (0, I
2

),

where Wg,h(!jH) = Wg,h(!jH ; 0, 0) with

Wg,h(!jH)

=
T

2H⇡

Z !(j+1)H

!jH

|h(!)|2Vg(!)d! +
T

2H(2⇡)2d+2

Z

[!jH ,!(j+1)H ]

2

Z

D2

g(⌦
1

)g(⌦
2

)h(!
1

)h(!
2

)

⇥f
4

(⌦
1

,!
1

,⌦
2

,!
2

,�⌦
2

,�!
2

)d⌦
1

d⌦
2

d!
1

d!
2

.

A careful examination of the expression above shows that the term involving the fourth order

cumulant is of lower order since it involves a double integral
R

[!jH ,!(j+1)H ]

2 = O((H/T )2). Thus

Wg,h(!jH) =
T

2H⇡

Z !(j+1)H

!jH

|h(!)|2Vg(!; 0, 0)d! +O

✓

H

T

◆

. (32)

Furthermore, the correlation between each of the blocks Wg,h(!j1H) and Wg,h(!j2H) is asymp-

totically negligible. Therefore, heuristically, we can treat the real and imaginary parts of

{
q

�dH
Wg,h(!jH)

bBg,h;H(!jH ; r1, r2); j = 0, . . . , T
2H �1} as ‘independent standard normal random vari-

ables’ and define its mean squared average

bDg,h,W ;H(r1, r2) =
2H

T

T/2H�1

X

j=0

�

�

�

bBg,h;H(!jH ; r1, r2)
�

�

�

2

2Wg,h(!jH)
.

Thus, E[ bDg,h,W ;H(r1, r2)] =
1

H�d and analogous to (25) we have

r

T

2H

nh

H�d
bDg,h,W ;H(r1, r2)� 1

i

; (r
1

, r
2

) 2 eP
o

D! N (0, I| eP |), (33)

with H/T ! 0 as H, T,� ! 1. We define an L
2

or maximum statistic based on the above.

However, in practice the variance Wg,h(!jH) is unknown and once again we invoke the method of

orthogonal statistics to estimate it. Since { bBg,h(!jH ; r1, r2); (r1, r2) 2 P 0} satisfies the conditions
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of an orthogonal sample (see Remark 2.2), we estimate Wg,h(!j,H) with

cWg,h(!jH ;P 0) = b�2

⇣p
�dH bBg,h(!jH ; r1, r2); (r1, r2) 2 P 0

⌘

, (34)

and the observed bDg,h,W ;H(r1, r2) is defined with W in bDg,h,W ;H(r1, r2) replaced by cW , that is,

bDg,h,cW ;H(r1, r2) =
2H

T

T/2H�1

X

j=0

�

�

�

bBg,h;H(!jH ; r1, r2)
�

�

�

2

2cWg,h(!jH)
. (35)

The test statistic is constructed using the L
2

-sum

T
2,g,h,cW (P ,P 0) =

r

T

2H

X

(r1,r2)2P

H�d
bDg,h,cW ;H(r1, r2),

and by using (33), under the of stationarity null, we have
⇣

T
2,g,h,cW (P ,P 0)�

q

T
2H |P|

⌘

D!
N (0, |P|) with H/T ! 0 and |P 0| ! 1 as T,�, H ! 1. The maximum statistic M

2,g,h,cW
is defined analogously.

Remark 4.3 (The test under nonstationarity) Suppose that {Zt(s)} is a nonstationary

spatio-temporal process. Then by using the rescaling device described in Section 3 we can show

that bDg,h,W ;H(r1, r2)
P! Dg,h,W ;H(r1, r2) as T ! 1, �d/n ! 0, H/T ! 0, H ! 1, � ! 1 and

n ! 1, where Dg,h,W ;H(r1, r2) is defined in (17).

Again, without conducting a formal local asymptotic analysis, if

Dg,h,W ;H(r1, r2) =
µ(r

1

, r
2

)

T 1/2H1/2�d

where
P

r1,r2
|µ(r

1

, r
2

)|2 < 1 and for some (r
1

, r
2

) 2 P, µ(r
1

, r
2

) 6= 0, then the test will have

power.

4.3.1 Choice of h

Motivated by Section 4.2.1 we let h(!) = bVg(!;P 0)�1/2 and define the local average

bBg,bV �1/2
;H(!jH ; r1, r2) =

1

H

H
X

k=1

bag(!jH+k; r1, r2)
q

bVg(!jH+k;P 0)
. (36)

By using (32) we see its real and imaginary parts have limiting variance

Wg,V �1/2(!jH) = 1 +O

✓

H

T

◆

. (37)
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Therefore, we observe that by using h(!) =
p

Vg(!), Wg,V �1/2(!jH) is asymptotically pivotal

(even if the underlying spatio-temporal process is nonstationary). In other words, we can treat

the real and imaginary parts of {
p
2�dH bBg,h;H(!jH ; r1, r2); j = 0, . . . , T

2H � 1} as ‘independent

standard normal random variables’ and define its mean squared average

bDg,bV �1/2,1;H(r1, r2) =
2H

T

T/2H�1

X

j=0

| bBg,bV �1/2
;H(!jH ; r1, r2)|2

2
. (38)

Studying (38), we have avoided estimating the variance of bBg,bV �1/2
;H(!jH ; r1, r2) by simply

replacing this variance by its limiting variance which is 1. In the simulation study in Section 8

we compare the e↵ect this has on the finite sample properties of the test statistic. Using (33)

we have

r

T

2H

⇣

H�d
bDg,bV �1/2,1;H(r1, r2)� 1

⌘

D! N (0, 1) (39)

with H/T ! 0 as T ! 1, H ! 1 and � ! 1. Therefore we define the test statistic

T
2,g,bV �1/2,1(P ,P 0) =

r

T

2H

X

(r1,r2)2P

H�d
bDg,bV �1/2,1;H(r1, r2)

and that under the null of stationarity
⇣

T
2,g,bV �1/2,1(P ,P 0)� |P|

p

T/2H
⌘

D! N (0, |P|). Since

approximately T�d
bDg,bV �1/2,1;H(r1, r2) ⇠ �2

T/H , chi-squared with T/H-degrees of freedom, a sim-

ilar result can be derived for the analogous maximum statistic M
2,g,bV �1/2,1(P ,P 0) based on the

maximum of chi-squares.

In Section 8 we compare T
2,g,bV �1/2,cW (P ,P 0) and M

2,g,bV �1/2,cW (P ,P 0) (when we standardize

with sample variance cW ) with T
2,g,bV �1/2,1(P ,P 0) and M

2,g,bV �1/2,1(P ,P 0).

4.4 Asymptotic ‘finite sample’ distribution approximations

In the previous section we derive the asymptotic distribution of the three test statistics. However,

these results are asymptotic and do not take into account the extra uncertainty caused by the

variance estimation. In this section we “correct” for this additional uncertainty to obtain better

approximations of distributions of the test statistics under the null.

We recall from Remark 2.2 and Section 2.2, that the real and imaginary parts of the estimator
bA�(g;r)p
bca,�(S0

)

converge to a standard normal distribution under the null of stationarity as � ! 1 and

|S 0| ! 1. However, in reality |S 0| is finite and not that large. Therefore, in (11) we estimate it

with the t-distribution, which can be considered as the ‘asymptotic finite sample distribution’

of this ratio. Using a similar argument we can obtain the ‘asymptotic finite sample distribution’
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of | bAg,bV �1/2(r
1

, r
2

)|2/bVg(P 0), bDg,bV �1/2,cW ;H(r1, r2) and
bDg,bV �1/2,1;H(r1, r2). Using these results we

can obtain finite sample asymptotic approximations to the distribution of the test statistics

T
1,g,bV �1/2(P ,P 0), T

2,g,bV �1/2(P ,P 0) and M
2,g,bV �1/2(P ,P 0) under the null of stationarity. The

details can be found in Section 6 and these approximations are used in the simulations in

Section 8 (both these sections are in the supplementary material).

5 Testing for one-way stationarity

In this section we gear the procedure to specifically test for stationarity over one domain, without

necessarily assuming stationarity over the other domain. For the one-way stationarity test we

use the same test statistics defined in Section 4, however we use observations made in Section 3

in order to define the test set P over which the test statistic is defined. Many of the results in

this section depend on the auxillary results stated in Section 7 of the supplementary material.

For bag(·; r1, r2) as defined in (18) we observe:

• Spatial stationarity, but not necessarily temporal stationarity

If r
1

6= 0 for all !, we have bag(!; r1, 0) = op(1). On the other hand, if the process is

spatially nonstationary then the latter is not necessarily true. Therefore the test set is

P = S ⇥ {0}.

• Temporal stationarity, but not necessarily spatial stationarity

If r
2

6= 0 for all ! we have bag(!;0, r2) = op(1). On the other hand, if the process is

temporally nonstationary then the latter is not necessarily true. Therefore the test set is

P = {0}⇥ T .

We recall that in order to ensure the test statistics defined in Section 4 are asymptotically

pivotal we used the method of orthogonal samples to estimate the variance for various parts of

the test statistic. Therefore, we need to ensure the set P 0 over which the orthogonal sample is

defined is such that it consistently estimates the variance. To do this we derive expressions for

the covariances of bag(!k1 ; r1, r2) and bAg,h(r1, r2), respectively, under the general nonstationary

setting. In the following sections we consider the specific cases of spatial or temporal stationarity.

By using (16) we can show that under temporal and spatial nonstationarity the covariance

of bag(!k2 ; r1, r2) is

�dcov [<bag(!k2 ; r1, r2),<bag(!k4 ; r3, r4)]

=
1

2
<
h

b(1)r2,r4,k2,k4
(!k2 ,!k4 ; r1, r3) + b(2)r2,r4,k2,k4

(!k2 ,!k4 ; r1, r3)
i

+O

✓

1

T
+

1

�
+ `�,a,n

◆

,

(40)
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�dcov [=bag(!k2 ; r1, r2),=bag(!k4 ; r3, r4)]

=
1

2
<
h

b(1)r2,r4,k2,k4
(!k2 ,!k4 ; r1, r3)� b(2)r2,r4,k2,k4

(!k2 ,!k4 ; r1, r3)
i

+O

✓

1

T
+

1

�
+ `�,a,n

◆

,

and

�dcov [<bag(!k2 ; r1, r2),=bag(!k4 ; r3, r4)]

= �1

2
=
h

b(1)r2,r4,k2,k4
(!k2 ,!k4 ; r1, r3)� b(2)r2,r4,k2,k4

(!k2 ,!k4 ; r1, r3)
i

+O

✓

1

T
+

1

�
+ `�,a,n

◆

,

where

b(1)r2,r4,k2,k4
(!k2 ,!k4 ; r1, r3) =

1

�d

a
X

k1,k3=�a

g(⌦k1)g(⌦k3)⇥



bk4�k2(⌦k1 ,!k2 ;k3

� k
1

)bk4+r4�k2�r2(�⌦k1+r1 ,�!k2+r2 ;k3

+ r
3

� k
1

� r
1

)

+b�k4�k2�r4(⌦k1 ,!k2 ;�k
3

� k
1

� r
3

)bk4+k2+r2(�⌦k1+r1 ,�!k2+r2 ;k1

+ k
3

+ r
1

)

�

,

and

b(2)r2,r4,k2,k4
(!k2 ,!k4 ; r1, r3) =

1

�d

a
X

k1,k3=�a

g(⌦k1)g(⌦k3)



b�k4�k2(⌦k1 ,!k2 ;�k
3

� k
1

)bk4+k2+r4+k2(�⌦k1+r1 ,�!k2+r2 ;k3

+ r
3

+ k
1

+ r
1

)

+bk4�k2+r4(⌦k1 ,!k2 ;k3

� k
1

+ r
3

)b�k4+k2+r2(�⌦k1+r1 ,�!k2+r2 ;�k
3

+ k
1

+ r
1

)

�

.

Similar expressions for bAg,h(r1, r2) can be found in Section 7.2.

The above expressions are cumbersome, however, under one-way stationarity simplifications

can be made. We recall from the definition in (16) that

br2(⌦,!; r
1

) =

(

0 r
1

6= 0 and spatial stationarity

0 r
2

6= 0 and temporal stationarity
(41)

We use these results to simplify the expressions for cov[bag(!k2 ; r1, r2),bag(!k4 ; r3, r4)] in the case

of one-way stationarity.

5.1 Testing for spatial stationarity

In this section we adapt the test to testing for spatial stationarity. By using (40) and (41),

under the null that {Zt(s); t 2 Z, s 2 Rd} is spatially stationary but not necessarily temporally
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stationary we have

�dcov[<bag(!k2 ; r1, r2),<bag(!k4 ; r3, r4)] =

8

>

<

>

:

b(1)r2,r4,k2,k4
(!k2 ,!k4 ; r1, r1) +O( 1

T + `�,a,n) r
1

= r
3

b(2)r2,r4,k2,k4
(!k2 ,!k4 ; r1,�r

1

) +O( 1

T + `�,a,n) r
1

= �r
3

O( 1

T + `�,a,n) otherwise

where

b(1)r2,r4,k2,k4
(!k2 ,!k4 ; r1, r1)

=
1

2�d

a
X

k1=�a

|g(⌦k1)|2bk4�k2 (⌦k1 ,!k2 ; 0) bk4+r4�k2�r2 (�⌦k1+r1 ,�!k2+r2 ; 0)

+
1

2�d

min(a,a+r1)
X

k1=max(�a,�a�r1)

g(⌦k1)g(�⌦k1+r1)b�k2�k4�r4 (⌦k1 ,!k2 ; 0) bk2+k4+r4 (�⌦k1+r1 ,�!k2+r2 ; 0) ,

and b(2)r2,r4,k2,k4
(!k2 ,!k4 ; r1,�r

1

) is defined similarly. The same result can be shown for �dcov[<bag(!k2 ; r1, r2)<bag(!k4 ; r3, r4)].

Furthermore, �dcov[<bag(!k2 ; r1, r2),=bag(!k4 ; r3, r4)] = o(1).

In order to test for spatial stationarity, without the temporal e↵ect influencing the result,

we focus on r
2

= 0. In this case, the above reduces to

�dcov[<bag(!k2 ; r1, 0),<bag(!k4 ; r3, 0)] =

8

>

<

>

:

b(1)k2,k4
(!k2 ,!k4 ; r1) +O(kr1k1� + 1

T + `�,a,n) r
1

= r
3

b(2)k2,k4
(!k2 ,!k4 ; r1) +O(kr1k1� + 1

T + `�,a,n) r
1

= �r
3

O( 1

T + `�,a,n) otherwise

where

b(1)k2,k4
(!k2 ,!k4 ; r1)

=
1

2�d

a
X

k1=�a

|g(⌦k1)|2bk4�k2 (⌦k1 ,!k2 ; 0) bk4+k2 (�⌦k1 ,�!k2 ; 0)

+
1

2�d

min(a,a+r1)
X

k1=max(�a,�a�r1)

g(⌦k1)g(�⌦k1)b�k2�k4 (⌦k1 ,!k2 ; 0) bk2+k4 (�⌦k1 ,�!k2 ; 0)

Furthermore, defining bAg,h(r1, 0) as in (23) we have

T�d

2
cov[< bAg,h(r1, 0),< bAg,h(r3, 0)]

⇡
(

1

2

b+O
⇣

kr1k1
� + 1

T + `�,a,n
⌘

r
1

= r
3

O
�

1

T + `�,a,n
�

otherwise, except when r
1

= �r
3

.
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where,

b =
2

T

T/2
X

k2,k4=1

h(!k2)h(!k4)b
(1)

k2,k4
(!k2 ,!k4 ; r1) +

4

T 2�2d

T/2
X

k2,k4=1

a
X

k1,k3=�a

h(!k2)h(!k4)g(⌦k1)g(⌦k3)b0,4(⌦k1 ,!k2 ,⌦k3 ,!k3 ,!k2 ,�⌦k3 ,�!k3 ; 0)

and b
0,4 is defined in Section 7.2.

Based on the above observations we define the test set P = S ⇥ {0} (where S surrounds

zero, but is such that if r
1

, r
3

2 S then r
1

6= �r
3

). The set over which the orthogonal statistics

are defined is P 0 = S 0 ⇥ {0}, with S \ S 0 = ;. The DFT covariance is defined as

bAg,bV �1/2(r
1

, 0) =
2

T

T/2
X

k=1

bag(!k; r1, 0)
q

bVg(!k;P 0)
, where bVg(!k;P 0) = b�2

�

{�d/2
bag(!k; r1, 0); r1 2 S 0}

�

.

We observe that unlike the spatio-temporal test described in Section 4, in the definition of
bVg(!k;P 0) we only use frequency !k (i.e., we should let M = 0).

We use bAg,bV �1/2(r
1

, 0), defined above, to define the test statisticsT
1,g,h(P ,P 0) andM

1,g,h(P ,P 0)

(see Section 4.2). Note that when testing for spatial stationarity, we have to be careful about

using the test statistics T
2,g,bV �1/2,cW (P ,P 0) and T

2,g,bV �1/2,1(P ,P 0). This is because when the

process is temporally nonstationary the local average bBg,h;H(!jH ; r1, r2) is dependent over j.

5.2 Testing for temporal stationarity

Next we consider how to adapt the procedure to test for temporal stationarity. Under the null

that {Zt(s)} is temporally stationary but not necessarily spatially stationary and using (40) and

(41) we have,

�dcov[<bag(!k2 ; r1, r2),<bag(!k4 ; r3, r4)]

=

(

b(1)r2,r2,k2,k2
(!k2 ,!k2 ; r1, r3) +O

�

1

T + `�,a,n
�

r
2

= r
4

, k
2

= k
4

O
�

1

T + `�,a,n
�

otherwise
,

where, r
2

, r
4

, k
2

and k
4

is constrained such that 1  r
2

, r
4

, k
2

, k
4

 T/2 and

b(1)r2,r2,k2,k4
(!k2 ,!k2 ; r1, r3)

=
1

�d

a
X

k1,k3=�a

g(⌦k1)g(⌦k3)b0(⌦k1 ,!k2 ;k3

� k
1

)b
0

(�⌦k1+r1 ,�!k2+r2 ;k3

+ r
3

� k
1

� r
1

)
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A similar result holds for �dcov[=bag(!k2 ; r1, r2),=bag(!k4 ; r3, r4)] and cross-covariance term

�dcov[<bag(!k2 ; r1, r2),=bag(!k4 ; r3, r4)] is asymptotically zero.

In order to test for temporal stationarity and to avoid the influence of the spatial component

we focus on r
1

= 0. In this case the above reduces to

�dcov[<bag(!k2 ; 0, r2),<bag(!k4 ; 0, r4)] =

(

1

2

b(1)(!k2) +O
⇣

1+|r2|
T + `�,a,n

⌘

r
2

= r
4

, k
2

= k
4

O
�

1

T + `�,a,n
�

otherwise
,

where,

b(1)(!k2) =
1

�d

a
X

k1,k3=�a

g(⌦k1)g(⌦k3)|b0(⌦k1 ,!k2 ;k3

� k
1

)|2.

And similarly for �dcov[=bag(!k2 ; r1, r2),=bag(!k4 ; r3, r4)]. Furthermore, defining bAg,h(0, r2) as in

(23) we have,

T�d

2
cov[< bAg,h(0, r2),< bAg,h(0, r4)] =

(

1

2

c+O
⇣

1+|r2|
T + `�,a,n

⌘

r
2

= r
4

O
�

1

T + `�,a,n
�

otherwise
,

where,

c =
2

T

T/2
X

k2=1

|h(!k2)|2|b(1)(!k2)|2 +
4

T 2�2d

T/2
X

k2,k4=1

a
X

k1,k3=�a

h(!k2)h(!k4)g(⌦k1)g(⌦k3)

⇥b
0,4(⌦k1 ,!k2 ,⌦k3 ,!k3 ,!k2 ,�⌦k3 ,�!k3 ; 0).

Using these observations we use the same test statistics as those described in Section 4. The

only di↵erences are that we set r
1

= 0 when we test for spatial stationarity and use the set

P = {0} ⇥ T (where T ⇢ Z+). We do the same in order to estimate the nuisance parameters

Vg(!) and Vg,bV �1/2 and Wg,bV �1/2(!) (where T 0 ⇢ Z+).
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