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SUPPLEMENT TO “A FREQUENCY DOMAIN
EMPIRICAL LIKELTHOOD METHOD FOR IRREGULARLY
SPACED SPATIAL DATA”

By SOUTIR BANDYOPADHYAY*, SOUMENDRA N. LAHIRIT AND DANIEL J.
NORDMAN?

Lehigh University, North Carolina State University and lowa State
University

We present some details of the proofs and some additional simu-
lation results for the main paper.

1. Proofs of the lemmas. For completeness, we restate the lemmas
and give the proofs. The proof of Proposition 4.1, from Section 4 of the
manuscript, is deferred to the end here. The notation and notational con-
ventions correspond to those of the main paper. To avoid confusion with
the equation numbers in the main, the equation numbers in this section are
given as (S.x).

We require some additional notation. Let Cj(w) and S, (w) denote the
cosine and the sine transforms of the data, respectively given by the real
and the imaginary parts of d,,(w) (cf. (2.2)). Define the bias corrected pe-
riodogram I, (w) = I,(w) — n~'A46,(0) and its variant I*(w) = I,,(w) —
n~ X% (0). Let f(w) = fe‘x/wf(x)dx, w € R? and similarly define f2. Let
N={1,2,...} and Z; = {0,1,2,...}. For r € N, let ey, ..., e, denote the
standard basis of R", with e; € R" having a 1 in the ¢th position and 0
elsewhere. Next, for r € N, define the joint cumulant of random variables
Yy, .Y, by

ar
N ot1,...0t,

We extend this definition to complex valued random variables Z; = Y7;+1Yo;,
i =1,...,r by multilinearity, by setting, x,»(Z1,-- ,Z,) = xr(Z1, -+ , Zi_1,
Yli7 Zi+17 T, Zr) +LXT(Z1) T Z’i—la Y2i7 Zi+17 e )ZT’) fOI' all i.
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Recall that, for a random quantity 7" depending on both {Z(s) : s € R%}
and {X1,Xay,...}, ET denotes the conditional expectation of T' given X =
{X1,Xa,...} and P similarly denotes conditional probability. Similarly, in
the following, (In(wl), e ,In(wr)) refers to the conditional cumulant of
I(w1),...,In(wy), given X. Again write Px and Ex to denote the proba-
bility and the expectation under the joint distribution of X1, Xa,.... We let
C or C(-) denote generic constants that depend on their arguments (if any),
but do not depend on n or the {X;}. Similarly, let Py(-) denote a generic
polynomial of degree k > 1 with real co-efficients that do not depend on n
and the {X;}.

Lemma 7.1 first provides an integral bound on sinusoids summed over the

frequency grid N from (3.2) (cf. Section 3.1). This technical result is used
in the proof of Lemma 7.5 and Proposition 4.1 to follow.

LEMMA 7.1.  For the frequency grid {j/\;“ jeztje [—C’*)\Z,C*/\Z]d} =
{win Y, from (3.2) and any € > 0,

N
[ exvteteon)
k=1

Proof For a real number x, write (z)2, for  modulo 2w with values in
[, m), i.e., (x)or = — 2wk for all x € 2wk — 7w, 2wk + 7), k € Z. Then, as
the frequencies lie on a regular rectangular grid,

(L+[Jel) "0+ )dt < O(d, [N log A

g exp( Lt'wkn
k=1

d

= H { Z exp(Ltjk/\,:“)}

J=L o —Cr NI <k<C*A]

—1].

B H [1 — exp(tj A, " [C*AL]) N 1 — exp(—utj A, " [C*AL])
B e 1 —exp(etjAn") 1 —exp(—utj A, ")

Now using the bounds that |exp(tz) — [1 + wx]| < 22/2 for |x| < 1 and that
inf{|1 —exp(tx)| : 1 < |z| < 7w} > 0, one can show that for any ¢ € R,

‘ 1 —exp(itA,*[C*An )
1 —exp(ttAy")

(2C* + 1)\ if [(EX, ) or | < AR

S.1 < gnlt) = i i n 0
(S.1) < ga(®) {(t/\fﬁ)% it AT < (N, )2n] < T
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Hence, it follows that

N
/ ‘ Z exp(tt'wpy)
k=1

(1+ ]y~

d 00
< c@I] [ (el <x7)
j=1770°
A=) |1 (A7 K L= gt
27 e L (AT S (AT el < ) O+ )Ty
< calx{u/ (L4 [t~ eat
ez [tAn " —2mj| <A,
d
+/ [tAF — 2mj 11 + yty)—l-ﬁdt}}
An 1<t —2mj|<m
< @] Y {4 2] jixg) 0+

JET

1 —(14+€) qd
+/ S| (1+ \t+2mgy> dt]
ATt <R

. . Nk —(1+¢) _ d
< Clde) [An+>\n§{<l +alsiag) /An"+“<|t|g7r>\;g - at)]

d
< CO(d,e) [X,j log An} .
This completes the proof of Lemma 7.1. [

Lemma 7.2 next establishes bounds on cumulants involving general spatial
averages. This result is applied to develop for expansions of the bias and
variance of the periodogram I, () in Lemma 7.3 to follow and is also used
in the proof of Lemma 7.5.

LEMMA 7.2. Let {W(S) is € Rd} be a possibly nonstationary strongly
mizing random field, with finite means (i.e., EW(s) € R) and mizing co-
efficient a(-,-), that is independent of X. Also, let Condition (C.2)(i) hold.
Then for any r € N;r > 2 and ¢ € (0,1],

sup
by, ,bre[-1,1]"

X [ D buWsi) | oo | D b Wiisy) ‘
j=1 j=1

CAn
< C(r,0) [Z f(r=1d [a(k‘;r)]‘s/(ﬂré) Cras ATV s (Px),
k=0
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where by, = (bg1,- -, bkn) € [—1,1]", 1 < k < r, and where {, = sup{(E|W (s)—
EW(s)[%)a :s € RY}, a > 1.

Proof This is a consequence of Lemma 5.1 of [BLN], though we outline the
main steps for completeness. Let m,, = nA; %, n > 1 and recall the sampling
region D, = A\, Dy C R% Let J, = {j € Z¢ : {5 + (0,1]9} N D,, # 0}.
Based on the exponential inequality of [2] (Lemma 5.1) for the independent
sampling site locations {s; = A\, X;}7_;, there exists a C' € (0, 00) such that

n
Px (mz}x I(AX; € {7 + (0, l]d} ND,,) > Cm,, infinitely 0ften> =0,
Je n .
=1
where I(-) denotes the indicator function. Hence, eventually for large n
(a.s.(Px)), the number of observations in {j + (0,1]?} N D, is at most
Cm,, for any j € J,. For each 1 < k < r, we then group the sums
> ie1 bkiW (s;) corresponding to s;’s in each cube j + (0, 114, j € Jy,, as
S bW (s;) = Yjes, Wi(g) for Wi(5) = S bW (si)I(s; € +(0,1]%).
The observations W (j), j € J,, are now lattice variables (each a sum of no
more than Cm,, W(:) variables). Applying Theorem 1.4.1.1 of [1], we can

bound [x, (jes, Weld): -+ +Xjes, Wrld)) | by

CAn

| Jn|C(r, 8) [Z KD (ks r)]‘”(”“)] Crps - (m)”

k=0

using the mixing coefficient and covariance bounds based on «(+;r) and r+4¢
moments of {W(s) :s € R?}; the value r in a(-;r) owes to the fact that
cumulants involve variables Wk(jk), Jik € Jn, 1 < k < r defined on regions
as unions of cubes with volume not exceeding r; see Section 4.1 for details on
the mixing coefficient. Note the sum with «(-;r) is over all possible (integer-
valued) distances in ¢1-norm (i.e., || - ||1) between cubes indexed by J,,, with
a maximal distance of C\,, for some factor of \,. Because |J,| = O(|D,|)
is of order of the volume O(\%) of the sampling region D,,, the result then
follows. O

For notational simplicity, we shall suppose that the indexing of the ele-
ments of the set N is done in such a way that wy, = 0. Also, recall that we
use the order symbols o%(-) and O%(-) if the corresponding bound is valid
uniformly. To state the next lemma, define

Hy(x,8) = o(6) /() [f(x+ A1) = f(x)], x,t € R
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and set

R (w) = 2//e_bt,an(x,t)dtdx.

Then, we have the following result on the bias and the variance of the peri-
odogram I,(-) at the non-zero frequencies. The expansions in Lemma 7.3 are
used to establish distributional properties of the periodogram, and certain
sums of the periodogram, in the remaining lemmas here (Lemmas 7.4-7.7).

LEMMA 7.3.  Suppose that Conditions (C.0)-(C.1) and (C.2)(i) hold and
that 0 < k < 1. Then, for any € € (0,1),

(S.2) ‘Eln(wjn) - [An(wjn) + Rl (wjn)} ‘ = O0%(n~Y?*9),  and

Var (L(wsu)) = [42(@50) + Au(@ju) Pr(Da(e;n)) + Po(Dale30))]|

(S.S) = [An(wjn) +)\;1} ,Ou(n—1/2+e) +Ou()\;d+n_1+26)7

a.s. (Px), for all 2 < j < N where Py(-) is a polynomial of degree k
(with real coefficients that do not depend on n), k = 1,2, and D,(w) =
(Bn (@), Bd2(w), Ed}(~w)).

Proof Fix € € (0,1). Then, using Lemma 5.2 of [BLN], one can show that
uniformly over w,w* € {wj, : j=1,2,..., N},

Ed,(w)d,(—w™)
= 2[00l — ) + (5 )22 ol Pl - )
S4) 40 POulw” —w)}] + Rolw,w") +O(n71250)

a.s.(Px), where Ry (w,w*) = [ [ T (x;w, w*) Hy(x, t)dtdx, with T'), (x; w, w*) =
I'in(x;w, w*) + Dip(x;w*, w), Dip(w*, w) = et @ etdnx (W-W7) Relation
(S.2) readily follows from (S.4).

Next consider (S.3). Note that
(S.5) [Ha(x,8)] < CXtlllo(t)] f(x) < ON

for all x,t.
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Using the identities ‘Cy,(w) = [dp(w)+dp(—w)]/2" and ‘S, (w) = [dy (w) —
dp(—w)]/(2¢)” and using (S.4), one can show that a.s. Px,
(S.6)

ECwjn) = 27 An(wjn) + R (wjn)| + Pii(Da(wjn)) + O(n=1/2+),
ES2(wjn) = 271 An(win) + Bh (wjn)| + Pia(Da(wjn)) + O(n=1/2¥e)
ECn(wjn)Sn(wjn) = LP13(Dn(wjn))

for some polynomials Py;(-) of degree one (with real coefficients). Next note
that for any zero mean random variables Y7, ..., Yy,

Cov(Y1Y2, Y3Yy)
(8.7) = xa(Y1,...,Ys) + x2(Y1, Y3)x2(Ya, Ya) + x2(Y1, Ya) x2(Y2, ¥3).

Now using the expression for Var(I,,(w;)) as a weighted sum of Var(C2(w,)),
Var(52%(w;)) and Cov(C%(w;), S?(w;)) and using (S.7), (S.5), (S.4) and
Lemma 7.2, after some lengthy and tedious algebra, one can establish (S.3).
We omit the routine details. [J

The final proofs of the main distributional results about the SFDEL
method (e.g., chi-square limits in Theorems 5.1-5.3) depend on the use of
Lemmas 7.4-7.7 to follow; proofs of Theorems 5.1-5.3 appear Section 7.2 of
the manuscript.

LEMMA 7.4. Under the Conditions (C.0)-(C.3) and (C.5)’

N
E ZGeo(wkn)GGO(wkn)/IZ(wkn)
=1

N
= 22Gﬁo(wkn)GGO(wkn),A%(wkn) + O(bi) a.s.(PX).
k=1

Proof Fix € € (0,1). Without loss of generality, we may assume p = 1.
Also, for notational simplicity, we write wy,, = w; and drop the qualifier
‘a.s.(Px)’ from the statements below. Using (S.4), one gets

(S.8) ‘Edi(wk) - [Ai(wk) + RI2 (wk)] ’ = Ol (n~1/2te),

for 2 < k < N, where A*(w) = c,;la(O)f(2)\nw)+(27r)d¢(w)2_1[}5(2)\nw)—|—
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ﬁ(—Q)\nw)] and R[z] = [ [[2cos(t+2\,x)'w]H, (x, t)dxdt. By Lemma 7.3,
N
Z (wg) 12 wk)]
k=

G2 (wi) [Var([n(wk)) n (Efn(wk)ﬂ

M- T

G (6o [{ 42(1) + Au (@0 (Do) + Pa Do)}

k=2
HAn(wr) + A1 0% (72 + 08 (T 0T
2
+(An(wk) + R (wp) + O“(n—1/2+e)) }
(S.9) =2 Z Geo wi) A2 (wr) + Ritn + Rizn + Rizn, (say)

where Rix,’s are remainder terms satisfying:

|Ri1n| < ZGGO Wi { n(wr) + A, ] OU(n—l/2+e)+Ou()\;d+n—1+26)}

Rion = ZG% wi) An(wi) P1(Dn(wp)),

N

Rizn = ZGgo(wk)Pg(Dn(wk)),
k=2

for some generic polynomials Py (-) of degree k € {1, 2}, with real coefficients
that do not depend on n. Note that by Condition (C.3)(i), (ii),

(S.10) Z Gj, (wi)o = O(\Fd).
Hence,
(S.11)  |Rim| = o({[Nc;Ll + Agﬂ + NA;l}n*1/2+€> — o(b2).

By (S.5) and (S.10), |Ri2,| = O(N54~1) = o(b?). Hence, it remains to show
that Ri3, = o(b?). By (S.8), the fact that I,,(0) = AfLZ,%, and the arguments
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leading to (S.11), it is enough to show that

N
(512) > Gy (wi) Po (R (wi), R (wy), AL (wi)) = o(b3).
k=1

Note that by (C.5)’,

N
> 6 R ()P
k=1

- ‘////gGgo(wk)élexp (L(t+s)’wk>

H, (t,x)Hy(s, y)dtdxdsdy‘

IN

ext [ ] 52, ) exp (16 + 5w )|l o6
k=1

Ol [ [ Male+ st (s)) 5 deds
(S.13) = o(b2).

IN

Similarly,

N
> G @R w0
k=1

N
< oN? / / | 3063, (wi)exp (4l(b +5) + 2An(x + y)] wi )| %
k=1
Itlllisllo ()]0 (s)1f () f (v )dxdydtds
< OCaNy? / / M, (t + s+ 2\, [x + y])v(dt, dx)v(ds, dy)

Also, using (C.2)(ii) and (S.10), it is easy to verify that

(S.15) ‘ZGQO (wi)[AL (W) = 05y ot (1) = o(b2).

Now, using (S.13)-(S.15) and similar arguments for the cross-product terms,
one gets (S.12). This completes the proof of Lemma 7.4. O
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LEMMA 7.5.  Under the Conditions (C.0)-(C.3) and (C.5)’,

N

> Gag(win)Goy(@in) [Blwin) — (A2 (win) +K26%(@in) )| = 0,(b2),  a.5.(Px).
Proof Note that by Conditions (C.0)-(C.1) and (C.2)(i) above and by
Lemma 5.2 of Lahiri [2], 6,(0) — o(0) = O ()\_d/z), a.s. (Px). Hence, it

is enough to prove the lemma with I,,(-) replaced by I*(-) = L,(-) — ¢, 'o(0).
Note that

N N
S Gy (@in) Gy (win) (Tn(win) = e '0(0))” = 3 Gy (win) Gy (win) T(win)

i=1 =1

N
—2¢c, Z Gy, “’m)Geo (Win) In(win) + CEQ[U(O)}Q Z Gy (win)Go, (wm),

=1 i=1
(S.16)= Ji1 + Jiz + Ji3  (say).

Clearly, Ji3 is deterministic but Jy1; and Jyo are random. We now derive the
‘in-probability, a.s.(Px)-limits’ of these two terms, starting with Ji;.

For notational simplicity, for the rest of the proof, we again set p = 1. For
M € [1,00), define Z(s; M) = Z(s)1(|Z(s)| < M) — EZ(s)1(|Z(s)| < M)
and Z*(s; M) = Z(s)—Z(s; M), s € R%. Also, let d,,(w; M) and d} (w; M) be
obtained from d, (w) by replacing {Z(s;) : i =1,...,n} with {Z(s;; M) : i =

onyand {Z*(si; M) :i=1,...,n}, respectlvely Note that d} (w; M) =
dp(w) — dp(w; M). Also, let Sy(M) = b2 5N, Geo(""ln) 2(c.um,M) and
Sy(M) = b, > ZZ 1 Geo(wm)I*Q(wm, M), where I,(w; M) = |d,(w; M)|?
and I} (w; M ) |d% (w; M)|2. Then, using Cauchy—Schwarz inequality and
the inequality

‘|z1]2 - \zz|2‘ < (21| + |22])|21 — 22| for any complex numbers z1, 22,

one can show that

1/2

QZGHO Win { wm)—fﬁ(w;M)” <

V)| + 2[Sw(a0) S5 (1)

Hence, it suffices to show that, for some suitable sequence M = M,, — oo,
a.s. (Px),

(4) limn_sc0 E‘S}‘V(M)‘ — 0,
(S.17) (i) limpeo |ESN(M) — b2, = 0,
(é41) Ly, o0 Var(SN(M)) = 0.
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We shall set M,, = (log A\,)?¢ for the rest of the proof.
First consider parts (i) and (ii) of (S.17). By arguments similar to those
used in the proof of Lemma 7.4, we get

N
(S18)  E(Sn(M)) =2b,2 " G (win) A (win; M) + o(1);
i=1

(S.19)

N
B| Sk ()| = BS{ (M) = 26,2 Y G (@in) A (wini M) + 0(1),
=1

a.s. (Px), provided the following analogs of (S.10) hold:

N

(S.20) |3 G (wrn) (@rni M)| = o(A);
v

(8.21) |3 Ghy(wrn)é(win: M) = O,
k=1

a.s. (Px). Here A(w; M) and A*(w; M) are defined by replacing o(-) and
¢(+) in A(w) by the auto-covariance functions and the spectral densities of
the {Z(-; M)}- and {Z*(-; M) }-processes, respectively. (Note that for p > 1
and 1 < i # j < p, by Cauchy-Schwarz inequality, E|b; > 22\7:1 Gi o (Wkn)
Gj.00(Win) 3% (wgn, M)| admits a bound involving terms of the form ES} (M),
and hence, the restricting attention to the p = 1 sulffices.)

Let (M) = sup{(E|Z*(s; M)|*)"/® : s € RY} for a > 0. Also, write
o*(t; M), of(t; M) and o3 (t; M) respectively for Cov(Z*(0; M), Z*(t; M)),
Cov(Z*(0; M), Z(t; M)) and Cov(Z(0; M), Z*(t; M)). Note that the bound
by the monotone function h in Condition (C.3)(ii) need not hold for the
spectral density ¢*(-; M) (and for ¢(-; M)) after truncation. We now develop
an alternative approach to derive the growth bounds above. With a = /2
(where § € (0,1] is as in (C.1)), by Lemma 7.1 and the inversion formula,
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we have

‘ iGZO (Wi )" (Whn; M)‘
k=1

N
C(d) S " (@rni M)

k=1

O(d)(2m) / ‘ZN:exp(Lt’wkn)
k=1

C(d)/‘iexp(w'w/m)
k=1

S.22 < C(d)N“log Ay)3Ch sM ™2 = o(AF),
n 446 n

IN

IN

|o* (t; M)|dt

1 ([[t])] 25 [G 0 (M) 2dt

IN

where the step before the last one follows by Markov’s inequality. This proves
(S.20).
Next, consider (S.21). It is easy to verify that

ot) = ot; M)+ o"(t; M) + o} (t; M) + o3(t; M).

Now using arguments similar to those leading to (S.22), one can show that
forr=1,2,

‘ i Gy (Win) [[¢(wkn; M)]" — [(b(wkn)]r}
k=1

C(d,r)/)zN:exp(Lt’wkn)
k=1

< C(d,r) / )g:exp(bt’wkn)
k=1

(S.23) = o(\®).

IN

{lo*(t; M)| 4 o (t; M) + o5(t; M) }dt

1 (IE1D] 75 [ (M) (G (M)]2 + GB 0 Yt

This proves (S.21). Parts (i) and (ii) of (S.17) now follow from (S.18), (S.19),
(S.22) and (S.23).
Next consider Part (iii) of (S.17). Write C,(-; M) and S,(-; M) for the
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real and the imaginary parts of d,(-; M). Then,

Var(SN(M))
422090 win) G ( w]n)m( (wm»M)Jﬁ(wjn;MD,

i=1 j=1
N N
=0, ) > Gh (win) GG, (win)x2 ( {C2(win; M) + S2(win; M)}2 ,
i=1 j=1
{Cg(wjm M)+ Sr%(wjn; M)}2 )
= Qun(M) + Q2n(M) + - - - + Qon(M). (say)
We will show that limps_,oo limsup,,_,., Qin(M) =0, a.s. (Px), where

Qun(M) = b_4ZZG90 Win Goo wgn)X2 (C ("-’zmM%Ci(wjnSM))-

=1 j=1

The other terms can be shown to be negligible using similar arguments.
Using the product formula of cumulants,

*x
X2<C (Win : M), C wjn) ) ZZ HXU\( IzaM))
where Z;* extends over all 1ndecomposable partitions by ¢ non-empty

subsets Iy, -, I, of the (2 x 4) array:

(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4).

Since ECy(wjn; M) = 0 for all j, the summands under Y_* are all zero for
q=25,--,8. Hence it follows that

N N
b DT D0 D Gl (win) Gl win)

i=1 j—l

+b QZZ ZZG@O Win G90 wm)

=1 j=1

HX2< IZ,M)HXU\( (I,,M))

= QSB(MH@%?B(M), say,

[ (Cutrs ayn(1| = 2))‘

=1
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where the products [[;, extends over all factors with |[;| = 2 and [],,

extends over the remaining factors (with [/;| > 3). First consider QSL)(M ).
Now,

(o)

N N
< OB YD G (win) Gy (i) ¥ (Calwini M), Crlwjni M)

i=1 j=1

2 (Cowin: M) ) xa (Colwyu M)P ) 3 (Crlwins M), Cileoyui M) |

where, for any random variable W and r € N, we set W () = (W,...,W) e
R". Now using (S.6) and (S.8), and arguments in the proof of (S.21), one
gets limy, o0 Q&) (M) =0, as. (Px).

Next, using Lemma 7.2 and similar arguments, one can show that each of

the terms in Qgi)(M ) for ¢ = 1,2, 3 is negligible. Here we outline the main

steps for the case ¢ = 1 to point out the special treatment needed to handle

cumulants of order greater than 4 under the moment and mixing conditions

(C.0)-(C.1). Let (o(M) = sup{(|Z(s; M)|*)/* : s € R?}, a > 1. Note that
)

S0 K3y (k)T < oo implies that

v (k) = 0<[k73d]%6) as k — oo.
Hence, for ¢ = 1, by Lemma 7.2, for n > 0,

‘Xs (C’n(wm; M)H | Cp(wijn; M)(4))‘

CAn
< > k”[a(k;s)]ﬂn] NP1, (M)
k=1
CAn 3d(4+8) | 545
< CMS)\;gd Z /{37d |:]{3_75 i| n
k=1

< O(d,n)MPA™,

by choosing n > 0 sufficiently large, such that 7 — 81‘%77 < —1, where the
constant C(d,n) does not depend on i,j5 € {1,...,N}. Using the bound
above for ¢ = 1 and similar arguments for the terms for ¢ = 2,3, one can

conclude that lim,, Qﬁ)(M) =0, a.s. (Px). This shows that (cf. (S.18))

N
b > Gy (win) Gy (whn)' [ T2 (win) = 242 (win)] || = 0p(1), a5.(Px).
k=1
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By similar arguments, ||b;,? Zgil Goo(Win) Gy (Wien)' [In(Win) —An (win)]|| =
op(1), as.(Px). Hence, in view of (S.16), Lemma 7.5 follows. O

LEMMA 7.6.  Under the Conditions (C.0)-(C.3) and (C.5)’, for any € >
0,

P <1r§r}%xN |Goo (Whn) In(wkn)|| > ebn> =o(1), a.s. (Px).

Proof W.lg., suppose that p = 1. It is enough to show that a.s. (Px),

N
Tim bt G (win) [Eo;;‘*(wm;M)+Es;;4(wm;M>} =0
=1
N
. -8 8 . 8 . 8 . _
lim b, ;GQme)[Ecn(wm,M)+Esn<wm7M>} = o,

where C*(-; M), Cy(-; M), ... etc. are as defined in the proof of Lemma 7.5.
Both of these relations can be proved by recasting the arguments in the
proof of Lemma 7.5. We omit the routine details. [

LEMMA 7.7. Let ch®(B) denote the interior of the convex hull of a set
B € RP. Under the Conditions (C.0)-(C.3) and (C.5)’,

P<O e cho{Ggo(wkn)fn(wkn)}]kvzl) Slasn— oo as (Px).

Proof We outline the main steps. Let Y = {y € RP : |ly| = 1}. As in
the proof of Lemma 7.5, it can be shown that, as n — oo for any sequence
Yn € U with y, — yo for some yg € U,

N
dayn) = A" UGy (w@in) Tn (i) (Y1 (@) Ta(wja) > 0)
j=1

(S.24) 2, / Yo Goy(W)p(w)K dw a.s.(Px),
{9 Go,6>0}

where I(-) denotes the indicator function. To ease the notation, we will sup-
press the qualification “a.s.(Px)”, which holds implicitly throughout the re-
mainder. As [pq G, (w)p(w) dw = 0 by (C.2) and [a Gy, (w) G (w)$*(w) dw
is positive definite by (C.3)(iv), A = infyey f{y,G90¢>0} G, (W)yp(w) dw >
¢op holds for some ¢y > 0 (cf. Owen [3], Lemma 2). By (S.24) and using
countability arguments, for any subsequence {n;} C {n}, we take a further
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subsequence {n;} C {n;}, letting n; = k, such that liminf,_,.c A > co/2
holds a.s.(P), for Ay, = infycy di(y). Hence, on this set of P-probability 1, it
follows (pointwise) that Ay > ¢o/2 > 0 eventually for large k. When Ay > 0
holds, 0 must lie in the interior convex hull of {Gg, (w ;) I (wjk)}évz’cl. If not,
then by the separating hyperplane theorem, there exists @ € U such that
a’Ggo(wjk)fk(wjk) < 0 for all j = 1,..., Ni, implying a contradiction A <
dr(a ) = 0. Thus, pointw1se on a set of P-probability 1, 0 eventually belongs
to ch%{Gy, (wjk)Ik(w]k) 1- Since the original subsequence {n;} C {n} was

arbitrary, we have the result P (0 € ch?{Go(wjn) Ik (Win) j:l) 1. O

To conclude, we present the proof of Proposition 4.1 from Section 4, which
involves verifying Condition (C.5)’ on prototypical examples of spectral es-
timating functions given in Section 3.2 (cf. Examples 1-3 there).

Proof of Proposition 4.1. First consider Example 1. Here Gjg(w) =
cosh;»w —0;,1<j <p, where 0; = corr(Z(h;), Z(0)). For any 1 < i,j < p,

Zszl Gl 0o (Win)Gj.0, (wkn)exp(Lt’wkn)’ is bounded above by a constant
multiple of a sum of at most 16 terms of the form

N

Vin(a,b) = ‘ Z exp(t[a + b)'wy,) exp(tt' win,)
k=1

for a,b € {0, +h;, £h;}. Using arguments similar to those in the proof of
Lemma 7.1 and using (S.1), it is easy to show that

d
Vin(a,b) < C ] gn(e}lt +a+ b))
k=1

where the constant C' does not depend on a,b (and n). Finally, using a
change of variables for the case a; = 1, one can establish Condition (C.5)’
(with the bound O(M54(log \,)9) = 0(A\,b2)), as in the proof of Lemma 7.1.

Next consider Example 2. Here ‘ Z,]fv:l Gi 0o (Win)Gj.0)(Win) exp(tt’wiy,)

is bounded above by a constant multiple of a sum of at most 16 terms of
the form

N
‘/271 a b = ‘Z wkn ]lB wkn) eXp(Lt wkn)
k=1

where A and B are d-dimensional rectangles determined by ti,...,t, of
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Example 2. As in (S.1), it is easy to show that for any [a,b] C [—o0, 0],

Y MG exp(etiA)
—C* A <G<CH AT

= ‘ Z ]l( —C*NTVaXs <5 < C*ATA bafl) exp(ttjr, )| < gn(t),
J

here gy(t) = 4 GO DM 1A )ar] < A"
ere gn = * ) > =
Y \(t/\gw it AT <A )2q] <

Hence, Condition (C.5)’ likewise follows for Example 2. The proof for Ex-
ample 3 is similar to that for Example 1 and hence it is omitted. [J

2. Additional Simulation results. To facilitate a direct comparison
of different cases, we present the results from the simulation results for all
three sets of lags, including the set h; = (1,1),hy = (1, —1)’ reported in
the main paper.
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TABLE 1
Coverage percentage of 90% SFDEL regions for variogram model parameters 0 (uniform
design,).
h; = (1,1),hy = (1, -1)’
An =12 An =24 An =48
C K 100 400 900 1400 | 100 400 900 1400 | 100 400 900 1400
1 005|864 8.6 820 803 | 8.9 878 8r8 899 |89.3 894 89.7 879
1 01 | 871 8.3 786 759 |89.0 90.2 896 904 |8.0 914 915 90.0
1 02 |8.5 8. 811 764|900 887 901 89.7 |876 879 879 889
2 005|881 878 86.1 8.9 | 8.0 886 89.7 879 | 8.2 889 90.5 89.7
2 01 | 8.6 868 862 842|892 884 91.1 899 | 90.6 90.0 90.0 914
2 0.2 | 8.6 888 84.6 838 |89 899 899 892|899 89.3 881 894
4 0.05]8.0 878 89.6 831 | 8.3 89.0 90.1 90.2 | 929 882 90.6 89.9
4 01 | 8.3 886 887 864 |90.3 894 90.3 89.2 | 920 87.8 90.8 89.1
4 02 |84 89.0 874 879 | 8.7 889 90.0 896 | 92.8 88.6 885 88.8
h; = (1,1),hy = (3,3)’
C K 100 400 900 1400 | 100 400 900 1400 | 100 400 900 1400
1 005|884 879 81.8 828 |89.7 906 886 90.8 |89.6 91.3 90.0 90.8
1 01 |8.0 871 833 802 | 8.8 897 89.0 89.5 |89.7 895 89.9 889
1 02 |85 8.1 8.7 811|902 905 895 89.7 | 8.1 89.7 894 89.0
2 005|891 889 882 865 | 8.4 89.5 904 91.0 | 88.7 889 89.7 89.3
2 01 | 9.0 889 89.2 872|877 903 91.3 899 | 89.3 89.6 89.1 91.0
2 0.2 |83 898 8.3 859|893 905 886 886 | 88.8 89.8 873 89.0
4 005|907 894 909 892 |89.6 89.5 895 898 | 933 899 90.8 88.6
4 0.1 |87 895 909 89.1 | 90.0 889 90.2 89.6 | 92.6 87.7 89.4 8838
4 02 |84 898 90.6 90.0 | 89.7 884 89.2 90.8 | 93.5 885 899 90.1
h; = (3,3),hy = (-3, -3)’

C K 100 400 900 1400 | 100 400 900 1400 | 100 400 900 1400
1 005|898 874 872 880|896 91.5 895 90.1 |89.5 91.5 89.8 90.0
1 01 | 916 914 894 876 | 89.5 894 888 89.8 |89.2 893 908 89.6
1 02 |89 870 861 87.0 | 89.8 89.5 883 887 |8.1 907 905 902
2 005|915 919 909 90.2 | 91.1 89.6 89.8 90.7 | 90.5 90.0 89.1 89.1
2 01 |91.3 915 91.6 916 | 8.6 91.4 89.7 90.2 | 8.8 904 90.0 91.9
2 02 |89 889 91.0 86.5 | 8.1 91.0 888 876 | 89.3 89.8 87.8 89.6
4 005]91.3 911 919 90.7 | 91.5 89.9 90.4 90.5 | 93.2 87.5 90.6 89.7
4 01 |914 919 924 91.7 | 89.8 89.8 883 89.1 | 928 89.2 90.1 885
4 02 |91.0 901 926 90.7 | 91.0 874 90.7 89.8 | 93.5 89.8 888 88.6
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TABLE 2
Coverage percentage of 90% SFDEL regions for variogram model parameters 0
(non-uniform design)

h, = (17 1)/7h2 = (17 _1),

An = 12 An =24 An = 48
C Kk | 100 400 900 1400 | 100 400 900 1400 | 100 400 900 1400
1 005|883 868 855 796 | 89.4 839 864 90.1 | 90.2 89.2 89.6 90.0
1 010|857 835 803 787|888 87.7 89.6 920 | 87.0 90.5 89.5 89.3
1 020 |87.9 860 824 79.1 | 89.6 90.0 90.7 90.0 | 87.4 882 88.8 88.7
2 005|894 803 880 838 |90.1 88.6 89.7 889 |89.6 907 895 912
2 010|862 87.7 843 859 | 89.0 90.7 90.0 884 | 901 91.5 90.1 90.0
2 020|887 895 885 856 | 907 90.4 89.7 885 | 89.7 885 90.3 89.8
4 005|895 895 883 880 | 87.7 90.0 88.6 90.7 | 9.8 89.8 89.2 90.9
4 010|870 888 87.4 862 |89.0 899 87.9 894 |91.7 879 882 89.9
4 020|906 89.1 89.1 863|895 89.0 87.9 894 | 915 902 89.3 90.1
hy = (1,1), hy = (3,3)'
C Kk | 100 400 900 1400 | 100 400 900 1400 | 100 400 900 1400
1 005|904 887 86.1 830 | 888 89.2 87.6 90.3 | 90.1 89.4 89.9 89.0
1 010|873 847 81.3 815 | 88.7 834 902 90.6 | 88.8 922 90.6 90.2
1 020|888 870 858 834 |80.7 905 905 89.9 | 87.6 89.9 89.3 88.7
2 005|910 900 884 868 | 905 90.0 895 89.6 | 90.2 89.6 91.0 924
2 010|895 90.8 87.6 88.1 | 887 904 89.7 904 | 894 914 908 888
2020|878 90.1 89.4 863 |89.6 90.5 89.9 89.4 | 90.6 87.8 882 90.4
4 005|892 902 893 908 | 89.3 O1.6 89.8 904 | 93.9 904 892 884
4 010|883 886 894 89.0 | 8.6 91.4 89.3 90.1 | 92.6 89.4 894 89.7
4 020|911 902 89.9 89.0 | 89.6 883 889 89.9 | 91.3 898 904 882
hy = (3,3),hy = (=3, —3)’
C Kk | 100 400 900 1400 | 100 400 900 1400 | 100 400 900 1400
1 005|900 885 879 862 | 889 904 90.0 88.0 | 889 905 895 91.2
1 010 ]91.6 90.6 866 856 |89.8 91.3 89.9 89.7 | 89.3 92.0 89.9 89.3
1 020|901 875 859 86.1 | 89.4 888 89.6 87.6 | 89.8 89.3 90.0 89.7
2 0.05]91.3 905 895 908 | 90.5 90.9 89.6 889 | 89.9 88.9 895 90.8
2010|921 926 902 91.0 | 887 89.6 89.7 91.3 [ 89.1 90.1 89.9 889
2 020|883 908 89.8 88.7 |894 893 90.3 880 | 90.8 88.6 872 90.3
4 005|903 91.0 915 925 | 89.6 OL.3 89.8 89.2 | 953 902 90.3 88.6
4 010902 902 915 929 | 908 91.6 902 90.2 | 93.2 89.9 89.7 89.2
4 020|910 91.2 90.8 909 | 90.1 885 884 90.3 | 921 89.7 90.1 90.2
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