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1 Basic Model

The observational model considered here has the form

Yi = f(xi) + εi, for 1 ≤ i ≤ n. (1.1)

where Yi is the observed response at the ith combination of design variables (or ith location),

xi ∈ Rd, and f is the function of interest. The random components, {εi}, usually associated

with the measurement errors, are assumed to be uncorrelated, zero mean random variables

with variances, {σ2/Wi}. let us define, W = diag(W1, · · · ,Wn).

One parsimonious strategy for representing f is as the sum of a low order polynomial

and a smooth function,

f(x) = P (x) + h(x) (1.2)

• In nonparametric regression and smoothing, the assumptions on h are based on higher

order derivatives and in the case of thin-plate splines, the degree of P and the dimension

of x imply a specific roughness penalty on h based on integrated squared (partial)

derivatives.

• In spatial statistics models, the smoothness assumption is replaced by the assumption

that h is a random field. Under the assumption that f is a realization of a spatial

process, P can be identified as the spatial trend or drift, the fixed part of the model,

and h is modeled as a mean zero Gaussian process. Let,

Cov(h(x), h(x
′
)) = ρk(x,x

′
) (1.3)
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be a covariance function where k is a known function and ρ is an unknown multiplier.

Conditions on the covariance function then control the smoothness properties of h.

2 The unifying theme

In this article we will construct the set of basis functions {gν} for 1 ≤ ν ≤ n, with the

property that if uν =
∑n

k=1 gν(xk)WkYk, then the function
∑n

ν=1 uνgν(x) will interpolate the

data, Yk. This is possible because of an orthogonality property for the basis. Moreover, the

orthogonality will ensure that these interpolation coefficients, uk, are uncorrelated with each

other, simplifying the simulation of these estimators.

In addition to this basis, there is a sequence of increasing nonnegative weights (eigenval-

ues), {Dν} so that

f̂(x) =
n∑

ν=1

1

1 + λDν

uνgν(x) (2.4)

where λ is the usual spline smoothing parameter or in terms of the spatial process estimate

this is the “signal to noise” ratio, λ = σ2/ρ.

Question: Where does this magic orthogonal basis come from?

• For spatial process models the usual kriging surface is a linear combination of low

order polynomial functions and n functions, ψj(x) = k(x,xj), obtained by evaluating

one argument of the covariance function at the observed locations. A standard matrix

decomposition transforms this basis into the orthogonal one. (More later)

• For splines, one starts with polynomials and radial basis functions and then proceeds

in the same way. (More later)

Note: In this overview, the case of smoothing has been emphasized and is appropriate

when the function is observed with error (σ > 0). When measurement error is not present,

this is the same as setting σ = 0 and thus λ = 0 in the tapering formula. The result

is a linear combination of the basis functions that interpolates the observed data and can
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be extrapolated to provide estimates of the surface at unobserved points. Throughout this

article the interpolation results can be inferred from the smoothing estimators by considering

the limiting case as λ→ 0.

3 Thin-plate splines

A spline is defined implicitly as the solution to a variational (minimization problem). The

form of the minimization criterion determines the kind of spline. A thin-plate spline estimator

of f is the minimizer of the penalized sum of squares

Sλ(f) = n−1

n∑
i=1

Wi(yi − f(xi))
2 + λJm(f) (3.5)

for λ > 0 and where

Jm(f) =

∫
Rd

∑ m!

α1! · · ·αd!

(
∂mf

∂xα1
1 · · · ∂xαd

d

)2

dx

The sum of the integrand is taken over all non-negative integer vectors, α, such that
∑

(α1 +

· · · + αd) = m, and 2m > d. For one dimension and m = 2, J2(f) =
∫
{f ′′

(x)}2dx, giving

the standard cubic smoothing spline roughness penalty.

The set of functions where the roughness penalty is zero is termed the null space, and

for Jm, consists of all polynomials with degree less than or equal to (m− 1).

Bayesian viewpoint

Minimization of Sλ results in a function that tracks the data but is also constrained to be

smooth. A Bayesian viewpoint is to interpret −Sλ, to within a constant, as the log of joint

density function for f and Y . Let p be the conditional density of Y given f and π, the prior

density for f .

−Sλ = ln(p(Y |f)π(f)) = ln(p(Y |f)) + ln(π(f))

If one adopts equation 3.5 then the roughness penalty is associated with a log prior distri-

bution for f . Furthermore, this prior can be interpreted as a distribution such that f is a
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realization from a smooth Gaussian process. From Bayes theorem we know that for fixed

Y the posterior is proportional to the joint density. Thus maximizing the joint density or

minimizing Sλ results in a mode of the posterior distribution.

3.1 Form of the spline estimate

The most important step in deriving the spline estimate is in identifying the solution as

a finite linear combination of basis functions. In this way, the abstract minimization over

a function space collapses into minimizing over the coefficients associated with the basis

functions.

Thin-plate splines are expressed in terms of radial basis functions.

• Let ψi(x) = Emd(x− xi) where Emd are the radial basis functions

Emd(r) =

 amd‖r‖(2m−d) log (‖r‖) : d even

amd‖r‖(2m−d) : d odd

and amd is a constant.

• Let {φj} be a set of t polynomial functions that span the space of all d-dimensional

polynomials with degree (m− 1) or less.

Now consider a function of the form:

f(x) =
t∑

j=1

φj(x)βj +
n∑

i=1

ψi(x)δi

clearly parametrized by β and δ.

Three key results for the computational form for the spline:

Define T , a n× t matrix with Tk,j = φj(xk). Let,

V = {f : Jm(f) <∞} and M = {f : f =
t∑

j=1

φjβj +
n∑

i=1

ψiδi and T T δ = 0}
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Then,

• M ⊂ V .

• minf∈V Sλ(f) = minf∈M Sλ(f).

• If T has full rank then a unique solution exists.

Proof: See Minguet (1979), Duchon (1977), Wahba (1990), Kent and Mardia (1994) for more

detail.

M is spanned by a finite number of basis functions. From the above properties it follows that

the solution to the spline minimization problem can be reduced to a optimization problem

over a finite dimensional space. With this result it is useful to rephrase the minimization

problem in matrix/vector form, substituting the finite dimension form into Sλ(f).

Let us define Ki,k = ψi(xk), then if T T δ = 0, we get,

Jm

(
t∑

j=1

φjβj +
n∑

i=1

ψiδi

)
= δTKδ

Therefore,

Sλ

(
t∑

j=1

φjβj +
n∑

i=1

ψiδi

)
= (Y − Tβ −Kδ)T W (Y − Tβ −Kδ) + λδTKδ. (3.6)

Now taking partial derivatives with respect to β and δ and noting that K is a symmetric

matrix, the solution satisfies the system of equations

−2T TW (Y − Tβ −Kδ) = 0

−2KW (Y − Tβ −Kδ) + 2λKδ = 0.

If {xi} are unique locations then K will have full rank. Multiply the second equation by

K−1 and substitute this new equation into the first. This yields the system of equations

T T δ = 0

Tβ +Kδ + λW−1δ = Y
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From the above two equations the solution is given by,

β̂ = {T T (K + λW−1)−1T}−1T T (K + λW−1)−1Y

δ̂ = (K + λW−1)−1(Y − T β̂)

Note: β̂ is a generalized least squares regression estimate if we identify (K + λW−1)−1 as a

covariance matrix for Y. This linear system also gives a simple form for the residuals from

the splines fit. The predicted values are just T β̂+Kδ̂ and the residual vector must be equal

to λW−1δ̂.

3.2 The QR parameterization

The previous derivation produces a solution that is readily interpreted but it is not a form

that is suitable for computation. Also in terms of making comparison with Kriging estimates,

a different parameterization is required.

Let T = F1R denote the QR decomposition of T .

• F = [F1|F2] is an orthogonal matrix.

• F1 has columns that span the column space of T , F2 has columns that span the space

orthogonal to T and R is an upper triangular matrix.

• Reparameterize δ = F2ω2 for ω2 ∈ Rn−t. This parameterization enforces the necessary

number of linear constraints on δ.

• Setting β = ω1 and ωT = (ωT
1 , ω

T
2 ), the system of equations reduces to the form:

Tω1 +KF2ω2 + λW−1F2ω2 = Y

• Solving this system of equations we get,

ω̂2 =
[
F T

2 (K + λW−1)F2

]−1
F T

2 Y

ω̂1 = R−1F T
1

[
Y − (K + λW−1)F2ω̂2

]
(3.7)
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3.3 The hat matrix, kernels and cross-validation

Examining the equations leading to ω̂, we see that all matrices involved are independent of

Y. Thus, for fixed λ and fixed locations, splines are linear functions of the data and there

is an n× n hat matrix, A(λ), such that,

[f̂(x1), · · · , f̂(xn)]T = A(λ) [Y1, · · · ,Yn]T

• The ith row of the A matrix gives the weights that are applied to the data to give

the function estimate at xi. When one plots these weights they look like higher order

kernels, although an explicit formula between λ and bandwidth is not obvious. In one

dimension the kernel approximation to a smoothing spline has been studied by many

authors and it has been seen that for uniformly distributed locations the bandwidth is

proportional to λ1/2m.

• Let Ŷk denote the predicted value for the kth data point based on the spline estimate

and let Ŷ?
k be the prediction for this point based on omitting the kth data point and

refitting the spline to the remaining (n− 1) data values. Then

a. Cross-validation criterion:

CV residual = Yk − Ŷ?
k =

(Yk − Ŷk)

1− Akk(λ)

CV criterion = CV (λ) =
n∑

k=1

Wk(Yk − Ŷk)
2

(1− Akk(λ))2

b. Generalized cross-validation criterion:

GCV criterion = V (λ) =
(1/n)‖W (I − A(λ))Y‖2

(1− tr A(λ)/n)2

The principle is that good choices of λ will give small CV residuals. So one might

choose λ by minimizing V (λ).
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4 Spatial process estimates

The derivation of the spline estimate in the previous section assumed that the unknown

function is fixed. In contrast, a spatial process estimate is based on a model for f as a

random function. Accordingly, we now assume f has the form from 1.2 and h is a mean zero

gaussian process.

We will see that the covariance function for h now plays the same role for spatial process

estimates as the radial basis functions do for splines.

4.1 The universal kriging estimator

Given observed data, {Yk}, an estimate for f(x) can be found as a linear combination of the

observations that minimizes the variance and unbiased.

For clarity, let x0 be the new point for prediction and so the goal is an optimal estimate for

f(x0) = T T
0 β + h(x0). Any linear estimate has the form Ŷ0 = mTY with m ∈ Rn. So our

goal is to identify m. Now let F1 and R be the QR decomposition of the T matrix, described

in the previous section. Equivalently, we can express m as m = Fa for some a ∈ Rn. Thus

the estimate is Ŷ0 = (Fa)TY. Furthermore, Fa can be partitioned as F1a1 +F2a2 where we

have subdivided the vector aT = (a1|a2)
T .

Determining a1:

From the orthogonality of F we have,

E[(Fa)TY] = (Fa)TTβ = aT
1Rβ.

Note that, E(Ŷ0) = T T
0 β and so in order for the estimate to be unbiased for all β it must

follow that, a1 = (RT )−1T0.

Determining a2:

Here we minimize the mean squared error of the estimate.

E
[
f(x0)− Ŷ0

]2
= var(f(x0)− Ŷ0)
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because the estimate is unbiased.

var(f(x0)− Ŷ0) = var(f(x0)−mTY)

= var(f(x0))− 2ρmTk0 + mT (ρK + σ2W−1)m.

where, ρKij = cov(h(xi), h(xj)) = ρk(xi,xj) and ρk0,j = cov(h(x0), h(xj)) = ρk(x0,xj).

The covariance matrix of the observations is (ρK +σ2W−1). We now switch to the notation

where m has been partitioned.

E
[
f(x0)− Ŷ0

]2
= E [Z1 + Z2]

2

= E(Z2
1) + 2E(Z1Z2) + E(Z2

2)

= var(Z1) + 2cov(Z1, Z2) + var(Z2). (4.8)

where, Z1 = T T
0 β−aT

1 F
T
1 Y, Z2 = h(x0)−aT

2 F
T
2 Y and using the fact that, E(Z1) = E(Z2) =

0.

Next we will just justify 4.8 as a quadratic function of a2, and set the partial derivatives

equal to zero. The solution to this linear system defines the minimizer.

Note: It is not necessary to work out the term for var(Z1) because it does not depend on

a2.

cov(Z1, Z2) = −aT
1 F

T
1 ρk0 + aT

1 F
T
1 (ρK + σ2W−1)F2a2

var(Z2) = var(h(x0))− 2aT
2 F

T
2 ρk0 + aT

2 F
T
2 (ρK + σ2W−1)F2a2.

Taking partial derivatives yields,

∂

∂a2

E [Z1 + Z2]
2 = 2F T

2 (ρK + σ2W−1)F1a1 − 2F T
2 ρk0 + 2F T

2 (ρK + σ2W−1)F2a2.

Now divide the equation by ρ and set λ = σ2/ρ. Solving for the parameters when the partials

are zero yields the solution

a2 =
(
F T

2 (K + λW−1)F2

)−1 (
F T

2 ρk0 − F T
2 (K + λW−1)F1a1

)

9



Remark:

Considering the equations for the two components of a it follows that,

f̂(x0) = mTY = T T
0 β̂ + k̂T

0 δ̂ =
t∑

j=1

φj(x0)β̂j +
n∑

i=1

ψi(x0)δ̂i.

where the basis functions, {ψi} are defined in terms of the covariance function: ψi =

cov(h(x), h(xi)).

4.2 Kriging estimates are a type of spline

Because of similar notation, the reader may have already anticipated another key result for

this estimate. Symbolically the form of the spatial process estimator is identical to the spline

estimator presented in the previous section. The kriging estimator can be characterized as the

solution to the minimization problem at 3.6 provided that the right identifications are made

for the basis functions and the K matrix. Because of this equivalence the cross-validation

formulas discussed earlier are also valid for the kriging estimate.

4.3 Thin-plate splines as spatial process estimators

If kriging estimates also solve a minimization problem, going in the other direction, perhaps a

thin-plate spline is just a spatial process estimate(?). The matrix K derived from radial basis

function is not itself a covariance matrix. In fact its diagonal elements are zero! However,

following the discussion in Wahba (1990) one can construct a covariance function of the form

k(x,x
′
) = Em(‖x− x

′‖) +Q(x,x
′
)

The modification, Q is symmetric and involves combinations of the radial basis functions

and polynomials up to degree (m− 1). It also has the following property: if u is any vector

orthogonal to the columns of T , then
∑n

j=1Q(x,xj)uj is a polynomial of degree (m− 1) or

less in x.

Based on this covariance there is of course a corresponding kriging estimate. Furthermore
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one can show that this estimate reduces to the usual thin-plate spline (Wahba 1990).

After going to the trouble to construct a valid covariance function from the radial basis

function kernel, Em(‖x − x
′‖), we see that the modification, (i.e., Q), has no impact on

the estimator. One can use the radial basis functions alone, pretending that it is a valid

covariance, and one will recover the same estimate from the kriging formulas. In summary,

a spline can be identified as a spatial process estimate with a fairly peculiar covariance

function.

5 Ridge regression estimates and shrinkage

Both the thin-plate spline and the spatial process estimators have a common form as ridge

regressions. This general form is at the heart of the numerical procedures for both methods

and leads to the construction of the orthogonal series and efficient formulas for determining

the smoothing parameter, λ.

Assume the model

Y = Xω + e

and let H be a nonnegative definite penalty matrix. The general form of the penalized

(weighted) least squares problem is minimization of

(Y −Xω)T W (Y −Xω) + λωTHω

over ω ∈ Rn. The solution is,

ω =
(
XTWX + λH

)−1
XTWY.
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5.1 A natural basis

Given the general framework, the specific applications to thin-plate splines and spatial pro-

cess estimates involve identifying the relevant parameterization to find the X matrix and

the penalty matrix, H. In both cases the constraint on the parameters, T T δ = 0, provides

a route to reduce the (n + t) basis functions to just n. Denote this basis as {ηi} where the

first t functions are equal to the polynomial terms, {φi} and the remaining (n− t) terms are

linear combinations of {ψj} based on the columns of F2. Explicitly we have ηi+t =
n∑

k=1

F2k,iψi

for these last members of the basis. We will refer to this as the natural basis because it

automatically builds in the constraint necessary for a solution. To the general reader there

is really nothing “natural” about this but it takes its name from the properties in the one-

dimensional case. In the case of one-dimensional, mth order spline this constraint results in

the higher derivatives j = m,m+ 1, · · · , 2m− 1 of the spline being zero at the boundaries.

Given a natural basis, the representation of the estimate is f(x) =
n∑

i=1

ωiηi(x). Thus the

relevant regression matrix is Xij = ηj(xi), and the associated penalty matrix is,

H =

(
0 0

0 F T
2 KF2

)
.

5.2 Demmler-Reinsh basis

Here we will consider a linear transformation of the natural basis to produce an orthogo-

nal one. This is accomplished by finding a matrix, G, that will diagonalize both XTWX

and H. Let B denote the inverse square root of XTWX and let UDUT be the singular

value decomposition of BHBT . Now set G = UTB and it is straightforward to verify that

GT (XTWX)G = I and GTHG = D (use simultaneous diagonalization, see, Melzer, 2004),

where D is diagonal. Finally we define the new orthogonal basis as

gν(x) =
n∑

i=1

Giνηi(x)

This basis, known as the Demmler-Reinsch (DR) basis in the context of splines. Assume

that f(x) =
n∑

ν=1

ανgν(x). We have the following properties for the basis.
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1. {gν} spans the same subspace of functions as the natural basis, {ην}.
2.

n∑
i=1

gν(xi)Wigµ(xi) =

 0 : µ 6= ν

1 : µ = ν

and so

n∑
i=1

f(xi)
2Wi =

n∑
ν=1

α2
ν

3. Setting ω = Gα

f(x) =
n∑

ν=1

ωνην(x)

and

ωTHω = αTDα =
n∑

ν=1

Dνα
2
ν .

These properties can be easily proved from the construction of the transformation matrix,

G. An important consequence from the second property is a simple representation for the

interpolating function. Given the sequences (xi, Yi), for 1 ≤ i ≤ n, let uν =
n∑

i=1

gν(xi)WiYi.

The function
n∑

ν=1

uνgν(x) will interpolate these data.

5.3 Simplifications due to the Demmler-Reinsch basis

Using the parameterization with respect to the Demmler-Reinsch basis, assume that f(x) =
n∑

ν=1

ανgν(x) and let u be the coefficients that interpolate the data pairs (xi, Yi).

Sλ(f) =
n∑

ν=1

(uν − αν)
2 + λ

n∑
ν=1

Dνα
2
ν

Note that now the parameters are decoupled and each term can just be minimized indepen-

dently to give the solution

α̂ν =
uν

1 + λDν
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leading to the function estimate presented in the introduction.

The DR basis also yields simple expressions for the residual sums of squares and the trace

of the hat matrix. the ith residual is

Yi − f̂(xi) =
n∑

ν=1

(
uν −

uν

1 + λDν

)
gν(xi) =

n∑
ν=1

λDνuνgν(xi)

1 + λDν

Using the orthogonal properties it follows that

n∑
i=1

Wi(Yi − f̂(xi))
2 =

n∑
ν=1

(
λDνuν

1 + λDν

)2

The hat matrix has elements

A(λ)ij =
n∑

ν=1

gν(xi)gν(xj)

1 + λDν

Wj

Again, using the orthogonality property it follows that the trace of this matrix is

trace (A(λ)) =
n∑

ν=1

1

1 + λDν

.

In each case, once the DR basis has been computed, the residual sum of squares and the

trace can be evaluated rapidly in O(n) operations.
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