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Finding elements of proteins that influence ligand binding specificity is an essential as-
pect of research in many fields. To assist in this effort, this paper presents two statistical
models, based on the same theoretical foundation, for evaluating structural similarity
among binding cavities. The first model specializes in the “unified” comparison of whole
cavities, enabling the selection of cavities that are too dissimilar to have similar binding
specificity. The second model enables a “regionalized” comparison of cavities within a
user-defined region, enabling the selection of cavities that are too dissimilar to bind the
same molecular fragments in the given region. We applied these models to analyze the lig-
and binding cavities of the serine protease and enolase superfamilies. Next, we observed
that our unified model correctly separated sets of cavities with identical binding prefer-
ences from other sets with varying binding preferences, and that our regionalized model

correctly distinguished cavity regions that are too dissimilar to bind similar molecular
fragments in the user-defined region. These observations point to applications of statis-
tical modeling that can be used to examine and, more importantly, identify influential
structural similarities within binding site structure in order to better detect influences
on protein-ligand binding specificity.

Keywords: Protein Structure Comparison, Structural Bioinformatics, Statistical Models,
Statistical Shape Analysis

1. Introduction

Discovering influences on protein-ligand binding specificity is a crucial aspect of

research in molecular biology, bioengineering, drug design, and other fields. In such
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settings, painstaking visual examination of protein structures can provide explana-

tions for biochemical observations made in the past, while informing the design of

future experiments along basic biophysical principles. As identified by visual exam-

ination, regional similarities between binding cavities may bind the same molecular

fragment, while regional variations elsewhere may create differences in specificity.

Similarities and variations of this nature are potential influences on specificity and,

once identified, they point to experiments that examine how influential they are.

But visual examination requires expertise in structural biology, and the con-

sideration of many structures is ultimately constrained by human limitations and

error. To guide and accelerate these efforts, computational methods can identify

potential influences on specificity 1,2,3. One approach has been to identify similari-

ties and variations in binding cavity shape. Boolean set operations can be used to

detect overlapping and non-overlapping regions in solid representations of binding

cavities (Fig. 1). Cavities with large overlapping regions may have similar binding

preferences, while cavities with large non-overlapping regions may accommodate

different ligands 1. Methods of this sort can thus assist human efforts because they

can automatically separate cavities likely to have similar binding preferences from

those likely to be different 4,5.

Fig. 1. A diagram of Boolean set operations (A).
Aligned proteins with distinctive cavities (B,D).
Overlapping cavities (C). The Boolean intersec-
tion (E) and union (F) of the cavities, which is
used to compute volumetric similarity.

This “unified” approach to the com-

parison of cavities, common among

most binding site comparison algo-

rithms (e.g. 6,7), evaluates similarity

between entire cavities. But binding

cavities can have similarities in some

regions and differences in others, caus-

ing some regions to have very different

impacts on specificity. Unified methods

have no means to assess the importance

of a user-defined region on specificity.

To address this problem, this paper

proposes a “regionalized” comparison

of protein cavities that detects when

two or more cavities are similar enough

within a user-defined region to bind

similar molecule fragments in that re-

gion. The position of the regions detected can indicate to a human user that an

area contained in detected regions may be responsible for similar specificity.

Boolean set operations offer a unique opportunity to regionalize the comparison

of protein-ligand binding cavities because comparative analysis can be focused on

any region with Boolean intersections. As we will show in this paper, regionaliza-

tion enables the construction of statistical models that are trained on the degree

of structural variation inside individual regions: Similarity is significant in regions

where no pockets are similar, while the same degree of similarity may not be signif-
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icant in regions where pockets are very similar. Because our regionalized model can

be independently trained on different cavity regions, their prediction thresholds are

customized to account for differences in structural variability and conservation. In

comparison to earlier unified methods, paraphrased here for comparison, regional-

ized methods add the additional capability of automatically isolating regions within

protein cavities that influence specificity.

2. Related Work

The methods described in this paper build on a new approach to protein struc-

ture comparison based on volumetric similarities and differences in ligand binding

cavities 1. This approach varies considerably from most existing methods, which

represent protein structures using points (point-based representations) and surfaces

(surface-based representations) in three dimensions. For both point- and surface-

based methods, statistical models have been developed for estimating the signifi-

cance of geometric similarity for differing applications. In contrast, our earlier work

described statistical models for volume-based comparison methods, including the

first statistical models of differential volume 4 and overlapping volume 5.

Point-based representations have notable strengths in comparison efficiency. The

least-squares alignment of points in space 8 enables structure comparison software

to rapidly consider thousands of atomic superpositions in a database search for

the alignment of two or more protein structures with greatest geometric similarity
9,10,11,12,13. Other approaches to point-based structure alignment, which employ

distance matrices 14 and geometric graphs 15,16 are also extremely efficient. These

alignment methods inspired the design of newer algorithms for the flexible alignment

of protein structures 17,18,19, and fuel the ongoing exploration of the space of protein

folds 20. As more protein structures become available, the topology of this space,

mapped with structure comparison algorithms, appears to be evolving from earlier

fold-based clusterings 21 to a more continuous space of variations 22,16,23.

A second class of point-based methods search for functionally related binding

sites. Methods of this type encode only the atoms of the binding site itself 24,25,26,

sometimes referred to as a motif, in order to identify similar functional sites inde-

pendent of protein fold. One of the major challenges in this subfield has been the

design of effective motifs that sensitively align with all functionally related bind-

ing sites, while specifically avoiding functionally unrelated sites. To design more

effective motifs, supporting algorithms can select atoms that yield more accurate

alignments 27,28,26, to integrate geometric data from multiple structures 29,30,31,

and the integration of empty spaces inside binding sites 32,33. As a result of these

developments, motif comparison algorithms can be extremely accurate point-based

methods for identifying proteins that catalyze the same reaction 30.

Surface-based methods use surfaces or surface patches to represent solvent-

accessible shapes 34,35. The surface itself is often described with triangular meshes
36,37, three dimensional grids 38, alpha shapes 39,40,41, or spherical harmonics 42,43,44.

Surface representations have been applied to the comparison of protein structures
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36,37 and electrostatic potentials 45, as well as hybrid representations that combine

point-based and surface-based information 32, but they can also be used to predict

the location of binding sites 39,46,47,48 and hot spots 49.

Statistical modeling is a critical aspect of both point- and surface-based methods,

because it enables an automated and quantitative separation between similar and

varying binding sites: Empirical 40, parametric 25,50, and nonparametric 51 models

can identify pairs of binding sites that are too similar to have occurred by random

chance. Parametric models can also identify variations in protein ligand binding

cavities that are large enough to influence specificity 4. In contrast to these existing

models, the methods described here model the volume of volumetric similarities be-

tween cavities with identical binding preferences, and extend them to independently

model regions inside protein cavities. The result is the first automated method for

automatically isolating regions that influence specificity.

3. Methods

In earlier work 5, we presented a prototype statistical model for identifying statis-

tically significant intersections of protein-ligand binding cavities. Using this model

we observed that groups of cavities with different binding preferences exhibit volu-

metric similarity (Equation 1) that is low and statistically significant (i.e. unusual)

relative to the higher degree of volumetric similarity found among cavities with

similar binding preferences. We first summarize methods related to this model.

We extended our earlier work by showing that we can model volumetric simi-

larity within a user-defined subregion of a set of binding cavities. This regionalized

approach enables the statistical significance of an overlapping pair of cavities to

be independently evaluated within a specific region, rather than within whole cavi-

ties. Depending on the user-defined subregion, the regionalized approach can ignore

highly variable regions, while scoring more stringently in conserved regions.

3.1. Computing Volumetric Similarity

d(C) =

v

(

k
⋂

i=1

ci

)

v

(

k
⋃

i=1

ci

) (1)Given a set of k aligned binding cavities C = c1, c2, ...ck,

we define the volumetric similarity of these cavities,

d(C), using Equation 1. When evaluating d(C), we first

generate intersection (∩) and union (∪) regions with

Boolean set operations (Figure 1A) developed in earlier work 1. We then measure

the volume, v(), of these regions using the Surveyor’s Formula 52. The geometric

interpretation of a set of aligned cavities with high volumetric similarity (e.g. close

to 1.0) is that they overlap closely, and thus have very similar shape. Cavities with

low volumetric similarity (close to 0.0) overlap poorly.

3.2. A Unified Statistical Model of Volumetric Similarity

Our unified statistical model employs a hypothesis testing framework. Underlying

this framework is the assumption that aligned cavities with identical binding pref-

erences will exhibit a large degree of volumetric similarity. Conversely, we assume
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that aligned cavities with differing binding preferences exhibit an unusually small

degree of volumetric similarity, relative to cavities with identical binding prefer-

ences. Beginning with these assumptions, and an input set of k aligned cavities C,

our null hypothesis is that d(C) is large. The alternative hypothesis is that d(C)

is unusually small. Because the null hypothesis and the alternative hypothesis are

logical complements, only one of these assumptions can hold.

We test the null hypothesis by first assuming that it holds for C, and then

estimating the probability p of randomly observing another set of k cavities C′

with d(C′) ≤ d(C). If the probability of observing another set of aligned cavities

with less volumetric similarity is improbably low (typically .05) then it is hard to

reasonably continue assuming that the null hypothesis likely holds. Under these

circumstances, we reject the null hypothesis in favor of the alternative hypothesis,

that d(C) is low because the cavities in C have different binding preferences. We can

interpret this decision biologically from our underlying assumptions: If the degree

of volumetric similarity between the k input cavities is unusually low relative to the

degree of volumetric similarity typically observed between cavities with identical

binding preferences, then we take this as evidence that the input cavities are unlikely

to have identical binding preferences. Rather than being a statement of fact, the

rejection of the null hypothesis represents a prediction based on quantified evidence

gathered during the training phase.

To perform this prediction, we must estimate the probability p, which requires

us to train the statistical model. Our training set, T , consists of n > k aligned

cavities from proteins known to exhibit identical binding preferences. For each of

the
(

n

k

)

combinations t, composed of k cavities selected from T , we compute the

volumetric distance d(t). These combinations yield
(

n

k

)

volumetric distances to train

the model, which is intended to represent the range of volumetric distances to be

expected in any set of k binding cavities with preferences identical to those in T .

While the scarcity of protein structure data enabled us to train our models using

all combinations, larger training sets can be used without all combinations. These

data are represented in a frequency distribution D (See Figure 3A).

It happens that the shape of D tightly fits a log-normal distribution, as demon-

strated in Section 3. The log-normal distribution represents an estimate of the

distribution of volumetric distances we might expect if our training data was infi-

nite. Here, we can use it to estimate the probability p of observing a set of k cavities

called C′, where d(C′) is less than that of our input set, d(C), and specificity iden-

tical to cavities in T .

We can estimate p by approximating the essential parameters of the log-normal

distribution: µ and σ, which are the mean and standard deviation for the log-

transformed distribution respectively. We approximate µ and σ with the mean (x)

and standard deviation (s) of the log-transformed sample data, as shown in Equa-

tion 2, where Φ is the cumulative distribution function of the standard normal

distribution. p is the proportion of the volume under the log-normal curve to the

left of d(C), relative to the total volume under the curve (x ≥ 0).
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p(d(C′) ≤ d(C)) = Φ(
log d(C)− µ

σ
) ≈ Φ(

log d(C)− x

s
). (2)

We fit the log-normal distribution to D so that p can be smoothly estimated

without discretizing effects from samples in the training data (e.g. individual t, de-

scribed above). Also, if we assume that the fitted log-normal distribution accurately

estimates the underlying probability p, then we can use the log-normal distribution

to extrapolate p values beyond that of the smallest d(t) observed on our training

set. This kind of extrapolation is impossible on nonparametric models, which have

finite support. Our results illustrate the accuracy of this extrapolation.

Given a trained statistical model and an estimated p-value, we hypothesize that

input sets of cavities exhibiting a high p-value will contain cavities with identical

binding preferences, while input sets of cavities exhibiting an unusually small p-value

will contain cavities with different binding preferences. We test this hypothesis in

Sections 4.1 and 4.2.

3.3. A Regionalized Statistical Model

The purpose of our regionalized statistical model is to estimate the probability p

that two cavities are similar enough within a user-defined region g to bind similar

molecule fragments in that region. Any closed region g can be used. To achieve such

a model, we first define a regionalized measure of volumetric similarity, dg(C) for a

set of aligned cavities C = c1, c2, ...ck. (Equation 3).

dg(C) =

v

(

k
⋂

i=1

(ci ∩ g)

)

v

(

k
⋃

i=1

(ci ∩ g)

) (3)

Three special cases involving regional volumetric

similarity can arise. First, dg(C) can be undefined,

because the Boolean union of C inside g may have

zero volume. In this case, cavities in C are consid-

ered categorically dissimilar. Second, dg(C) may be

zero, in which case the cavities are again categorically dissimilar. Third, dg(C) may

be one, in which case the cavities are considered categorically similar. These special

cases are not used for training the model, because they lead to pre-defined conclu-

sions, and if asked to evaluate the p value of a special case, the result is always 0.0

(case 1 or 2) or 1.0 (case 3).

Given our regionalized measure of volumetric similarity, we can build our region-

alized statistical model in a manner similar to our unified model: Using dg(C), we

build a regionalized hypothesis testing framework: We assume that regions within

aligned cavities that bind similar molecular fragments will exhibit a large degree

of regional volumetric similarity, and that regions within aligned cavities that bind

different molecular fragments will exhibit an unusually small degree of regional

volumetric similarity.

We test the null hypothesis by first assuming that it holds for C, and then

estimating the probability p of randomly observing another set of k cavities C′ with

dg(C
′) ≤ dg(C). If p is improbably low (typically ≤ .05) then we reject the null

hypothesis because it seems more probable that dg(C) is low because the cavities of



April 9, 2012 3:11 WSPC/INSTRUCTION FILE jbcb2012

A Regionalizable Statistical Model of Intersecting Binding Cavities 7

C bind different molecular fragments in g. To test the null hypothesis, we estimate

the probability p based on a training set, T , consisting of n > k aligned cavities

from proteins known to bind the same molecular fragments in g. For each of the
(

n
k

)

combinations of members of T , called t, we compute dg(t), and represent them

in a frequency distribution D, which fits tightly with the log-normal distribution.

We estimate p as the proportion of the volume under the log-normal curve to the

left of d(C), relative to the total volume under the curve.

3.4. Data Set Construction and Experimental Setup

Protein Families. The serine protease and enolase superfamilies were selected on

the criteria that each superfamily exhibit three subfamilies with distinct binding

preferences, and that variations in specificity are caused by well known structural

mechanisms.
Serine Protease Superfamily:

Trypsins: 2f91, 1fn8, 2eek, 1h4w, 1bzx,

1aq7, 1ane, 1aks, 1trn, 1a0j

Chymotrypsins: 1eq9, 8gch

Elastases: 1elt, 1b0e

Enolase Superfamily:

Enolases: 1e9i, 1iyx, 1pdy, 2pa6, 3otr, 1te6

Mandelate Racemase: 1mdr, 2ox4

Muconate Cycloisomerase: 2pgw, 2zad

Fig. 2. PDB codes of structures used.

Serine proteases hydrolyze pep-

tide bonds through the recognition

of adjacent amino acids with speci-

ficity subsites numbered S4, S3,

. . . S1, S1′, S2′, . . ., S4′. Each sub-

site preferentially binds one amino

acid before or after the hydrolyzed

bond between S1 and S1′. Cavities

in our data set are derived from

the S1 subsite, which binds aro-

matics in chymotrypsins 53, posi-

tively charged amino acids in trypsins 54, and small hydrophobics in elastases 55.

Proteins in the enolase superfamily catalyze a reaction that abstracts a proton

from carbons adjacent to a carboxylic acid 56. Opposite an N-terminal “capping

domain” 57, the C-terminal domain forms a TIM-barrel, which provides a stable

scaffold for amino acids that act as acid/base catalysts for several different reac-

tions 56. Cavities in our data set, on these amino acids, were classified into three

subfamilies that facilitate the dehydration of 2-phospho-D-glycerate to phospho-

enolpyruvate, in enolase 58, convert (R)-mandelate to and from (S)-mandelate 59,

in mandelate racemase, and reciprocally cycloisomerize cis,cis-muconate to and from

muconolactone, in muconate-lactonizing enzyme 56. Since members of the Enolase

family can exhibit open and closed conformations, only structures with the open

conformation were used, for consistency.

Selection. The Protein DataBank (PDB - 6.21.2011) 60 contains 676 Serine pro-

teases from chymotrypsin, trypsin, and elastase subfamilies and 66 enolase super-

family structures from enolase, mandelate racemase, and muconate cycloisomerase

subfamilies. From each set, we removed mutant and partially ordered structures.

Because enolases have open and closed conformations, all closed or partially closed

structures were removed. Next, structures with greater than 90% sequence identity

were removed, with preference for structures associated with publications, resulting
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in 14 serine protease and 10 enolase structures (Figure 2). Within these structures,

ions, waters, and other non-protein atoms were removed. Since hydrogens were

unavailable in all structures, all hydrogens were removed for uniformity. Atypical

amino acids (e.g. selenomethionines) were not removed.

Fig. 3. Volumetric similarity between pairs
of trypsin cavities (A), log transformed (B).
Quantile-Quantile plots of the gamma (C),
weibull (D), Pareto (E), GEV (F), Log-Normal
(G) models against the log transformed sample.

Alignment. Using Ska 13, an algo-

rithm for aligning protein structures, all

serine protease structures were aligned

to bovine gamma-chymotrypsin (pdb

code: 8gch), and all enolase super-

family structures to mandelate race-

mase from pseudomonas putida (pdb

code: 1mdr). Both superfamilies exhibit

identical folds, leading to nearly per-

fect alignment of all structures. These

alignments are so close that, in earlier

work 1, we observed that alignments to

other structures in our data sets gener-

ated identical results. Following struc-

tural alignment, solid representations of

binding cavities were generated using a

method described earlier 1.

Performance. Opteron 6128 proces-

sors with 32GB of random access mem-

ory (RAM) were used for all experimen-

tation. Our software is single threaded

and requires less than 1GB of RAM.

Computing volumetric similarity be-

tween a pair of cavities required an

average of .57 seconds. Training and

testing on cross-fold validation models

required runtimes proportional to the

number of combinations considered in each dataset. Leave-2-out tests, for example,

required 0:52 seconds for enolases, and 1:44 for serine proteases (min:sec), total.

4. Experimental Results

In previous work, we demonstrated that log-normal distributions are an accurate

model of the volume of cavity intersections, and that the log-normal model can iden-

tify cavities with identical specificity, based on statistically significant volumes of

intersection 5. In this section, we summarize these earlier results and describe related

experiments not found in earlier work. We then extend these results to demonstrate

that a log-normal distribution can also be applied in a regional context, despite

the presence of other categories of data, and finally show that regions with statisti-

cally significant overlaps isolate regions of protein cavities with an experimentally
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established influence on specificity.

4.1. Validating the Log-Normal Model

We considered multiple parametric models that would represent the degree of volu-

metric similarity between binding cavities with identical binding preferences. Test-

ing these models on the trypsin and enolase subfamilies of the serine proteases

and the enolase superfamily, respectively, we observed that the log-normal and

gamma distributions most closely reflected the volumetric similarity measurements

observed.

Figure 3 illustrates this point on the volumetric similarity between pairs of ser-

ine protease cavities as an example: In Figure 3B, the log transformed volumetric

similarity sample data visibly follows a normal distribution. Furthermore, inspect-

ing the quantile-quantile plots relating the data in Figure 3B to gamma, Weibull,

Pareto, Generalized Extreme Value (GEV), and Log-Normal distributions (Figures

3C-F), it is clear that the log-normal and gamma plots are more linear than the

others.

Similar observations were made when modeling the distribution of volumetric

similarity between pairs of enolase cavities, as well as triplets and quadruplets of

serine protease cavities, though in general, it appears that log-normal distributions

followed the data more closely than the gamma distribution. Based on these obser-

vations, we use the log-normal distribution to estimate p-values.

4.2. Classifying Cavity Similarity

Fig. 4. Multifold cross-validation experimen-
tal setup. In serine proteases, circles rep-
resent trypsin (green), elastase (red), chy-
motrypsin (blue) cavities. Among the eno-
lase superfamily, circles represent enolases
(green), mandelate racemases (red), and
Muconate Cycloisomerase (blue). Cavities
were allocated either to the test set or the
training set, demonstrating one fold of a
leave-4-out (A, top) and one fold of a leave-
2-out (A, bottom) comparison of cavities
with identical specificities. B demonstrates
one fold of a leave-4-out (B, top) and one
fold of a leave-2-out (B, bottom) compari-
son of cavities with differing specificity.

Multifold cross-validation was used to fully

test the predictive accuracy of our unified

model. First, we computed the statistical

significance of volumetric similarity among

cavities having binding preferences identi-

cal to the training set. For both trypsins

and enolases, we left out two cavities, while

training our unified model on the volumet-

ric similarity of pairs of cavities from the

remaining cavities. This is illustrated in the

case of enolase, at the bottom of Figure

4A. We then evaluated the statistical sig-

nificance of the volumetric similarity of the

left out pair. This process was repeated un-

til every pair of cavities had been left out

once. Based on the conventional standard of

significance, .05, 42 out of 45 trypsin valida-

tion runs and 13 out of 15 enolase validation

runs had statistically insignificant volumet-

ric similarity. Cavities with identical speci-
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ficity in our dataset were so consistently similar that no pair exhibited volumetric

similarity that was statistically significant relative to the others.

Since the trypsin set was larger than the enolase set, we also performed leave-3-

out and leave-4-out cross validation in the same manner (leave-4-out cross validation

is diagrammed in the top of Figure 4A). In leave-3-out, 106 out of 120 triplets

had statistically insignificant volumetric similarity, and in leave-4-out, 170 out of

210 quadruplets had statistically insignificant volumetric similarity. The volumetric

similarities of pairs, triplets and quadruplets of cavities were evenly distributed

throughout the [0,1] range, and generally statistically insignificant.

Next, we examined the ability of our unified model to measure the statistical

significance of volumetric similarity among cavities having binding preferences dis-

tinct from the training set. For both trypsins and enolases, we left out one cavity,

and trained our unified model on the volumetric similarity of the remaining pairs

of trypsin or enolase cavities. Then, for the remaining trypsin or enolase cavity, we

combined it in a testing set with the other members of our dataset having different

binding preferences. This configuration is illustrated, using enolases as an exam-

ple, at the bottom of Figure 4B. Pairs of cavities with different binding preferences

were dissimilar enough that volumetric similarity between them was statistically

significant in 91 out of 100 serine protease pairs and 59 out of 60 enolase pairs.

Again, because of the larger size of the trypsin set, we performed leave-2-out and

leave-3-out cross validation by training our unified model on all but 2 and 3 trypsins,

respectively. The remaining 2 (resp. 3) trypsins were combined with the other 4 non-

trypsin serine proteases, enabling the generation of multiple sets of cavities with

differing binding preferences. In leave-2-out validation we tested triplets of serine

protease cavities and in leave-4-out validation we tested quadruplets, in order to

ensure that no test triplet or quadruplet exhibited cavities with the same binding

preferences. This configuration is illustrated at the top of Figure 4B. In leave-2-

out cross validation, only 6 out of 900 sets with differing binding preferences were

statistically insignificant, and in leave-3-out, only 9 out of 4200 were statistically

insignificant. Pairs, triplets and quadruplets of cavities with heterogeneous binding

preferences were almost always statistically significant.

In general, almost all sets of cavities with identical binding preferences exhibited

measures of volumetric similarity that did not differ significantly from all other sets

of cavities with identical binding preferences. In contrast, all sets of cavities with

differing binding preferences exhibited measures of volumetric similarity that were

significantly less than other sets of cavities with identical binding preferences. These

results held regardless of the number of cavities in the set considered and for both

serine proteases and enolase superfamily cavities.

4.3. Validating the Regional Model

While our regional model is designed to represent the same kind of data as our uni-

fied model, it is conceivable that the most appropriate model for this data may not

be the log-normal distribution, as observed in Section 4.1. As before, we considered
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the gamma, Weibull, Pareto, GEV, and Log-Normal distributions, and we added

the Gaussian and T distributions as possible models for representing the degree

of volumetric similarity between binding cavities with identical binding preferences

inside a given region g, which was taken to be a cube of sidelength 5.0 Å.

This experiment was repeated for four different g regions from each of the enolase

and trypsin training sets, where the number of special cases (as defined in Section

3.3) varied from zero to most of set. The GEV and Pareto distributions could not

be suitably fit to the data, because estimates of their distribution parameters must

be calculated using iterative approaches. These approaches did not stabilize for the

two cases where special cases affected a majority of the set, forcing the GEV and

Pareto distributions to be eliminated from consideration. In the remaining cases,

based again on the comparison of quantile-quantile plots, the log-normal distribu-

tion fit better than the others, except the Gaussian distribution, which performed

comparably on this dataset. Given the success of the log-normal distribution on

the unified case, and the technical similarity of the unified and regional models, we

selected the log-normal distribution for consistency.

4.4. Testing the Regional Model

We tested our regional statistical model by assembling a training set of all enolase

and trypsin cavities. From each training set, we excluded one cavity for testing.

Among enolases, this was the binding cavity of Enolase 1 from Toxoplasma gondii

(3otr), and among serine proteases, this was human trypsin 4 (1h4w). Rather than

select an arbitrary user-defined region for analysis, we fully surrounded each training

set of aligned cavities with a lattice of cubes having sidelengths of 5.0 Å. Each of

the 125 cubes around the enolase training set, and the 252 cubes around the serine

proteases was treated individually as a user-defined region for statistical analysis.

Thus, each cube formed the basis for an individually trained regionalized sta-

tistical model, as described in Section 3.3. The majority of models regionalized in

this manner were trivial because the cube where the model was trained intersected

with no training set cavities. Most trivial models were created because a generous

margin of cubes were generated surrounding the aligned cavities: 65 cubes around

the enolase set and 144 cubes around the trypsin set were trivial in this manner.

At every cube, p-values were computed for the regional volumetric similarity be-

tween the excluded cavity and the dataset cavities with non-enolase or non-trypsin

specificity. Since there were four non-enolases and four non-trypsins in our dataset,

four p-values were generated for every cube. Most cubes with non-trivial models

exhibited 1 or zero statistically significant p-values, based on our .05 significance

threshold. These cubes were situated in regions of the cavity alignments where the

non-enolase cavities and non-trypsin cavities were essentially identical to enolase

and trypsin cavities. That this occurs so frequently is unsurprising because the cav-

ities in both families are strongly defined by the family’s overall fold: the TIM-barrel

fold in enolases is totally conserved among the entire enolase superfamily, as is the

serine protease fold.
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Where the cavities do vary, however, many statistically and categorically signif-

icant p-values were observed. Seven cubes among the enolase models exhibited four

statistically significant p-values, and six cubes among the serine protease models ex-

hibited four statistically significant p-values. A selection of these cubes found on the

serine proteases can be seen in Figure 5. In every case, these cubes corresponded to

cavity regions that do not bind the same molecular fragment, as established experi-

mentally by other authors. For example, the four models with the most statistically

significant p-values among the serine proteases (Figure 5A2,B2) correspond to cav-

ity regions essential for accommodating the large hydrophobic sidechains that bind

to chymotrypsins 53.

Fig. 5. The structurally aligned S1 cavity of human trypsin 4 (teal) and the S1 cavity of cow
chymotrypsin (transparent yellow with black outline), with six regionalization cubes, shown in
two orientations. The orientation on the right is that of the left rotated about a near-vertical

axis approximately 180 degrees. A1,B1 represent two cubes that generate models with statistically
significant p-values. A2,B2 represent four cubes that generate the most statistically significant
p-values; these cubes coincide with regions of the chymotrypsin S1 cavity that are essential for
accommodating larger and more hydrophobic amino acids that the shorter trypsin cavities cannot
accommodate.
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5. Conclusions

We have presented a new regionalized statistical model that expanded on a uni-

fied statistical model described earlier 5. To our knowledge, the approach described

here is the first method for automatically decomposing multiple structural align-

ments of protein-ligand binding cavities and evaluating the statistical significance

of volumetric similarities within user-defined cavity regions. We demonstrated an

application of this regionalized model that is not possible with existing methods:

We divided multiple structural alignments of serine protease and enolase cavities

into a lattice of cubes and analyzed regionalized volumetric similarity in each cube.

In developing this new statistical model, we observed that the log-normal dis-

tribution performed at least as well or better at representing volumetric similarity

data in comparison to multiple parametric distributions. In testing the regional-

ized model, we observed that agglomerations of cubes with statistically significant

p-values could identify experimentally established structural influences on ligand

binding preferences.

Regionalized statistical models have useful applications where existing models

have not been applied, such as in the regionalized analysis of protein-ligand binding

cavities for inhibitor design. By identifying regions with a statistically significant

lack of similarity among proteins expected to have similar binding preferences, users

may be able to identify variations that can be exploited for selective inhibitors. In

combination with other sources of biophysical data, regionalized statistical models

may thus provide new insights and methods in molecular design and analysis.
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