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Abstract

It is already known that the convolution of a bounded density with itself can be estimated at the root-n

rate using the two asymptotically equivalent kernel estimators: (i) Frees estimator (Frees (1994)) and (ii)

Saavedra and Cao estimator (Saavedra and Cao (2000)). In this work, we investigate the efficiency of these

estimators of the convolution of a bounded density. The efficiency criterion used in this work is that of a

least dispersed regular estimator described in Begun et al. (1983). This concept is based on the Hájek-Le

Cam convolution theorem for locally asymptotically normal (LAN) families.
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1. Introduction

Let X1, · · · , Xn be independent and identically distributed random variables with distribution function F

and bounded density f . Let p denote the convolution f∗f of f with itself,

p(x) =

∫
f(y)f(x− y)dy, x ∈ IR. (1.1)

In the field of statistics, density estimates play an important role. However in many instances, instead of

estimating the density of the observations, one is interested in estimating the convolution density p(·) as in

(1.1). Frees (1994) describes motivating examples of practical applications of p(x) in the insurance, as well as

reliability, areas. One can also use estimators of p(·) to test whether f belongs to a given family of densities

that is closed under convolutions, like the Gaussian family of densities (see, Schick and Wefelmeyer (2007)).

Moreover, if the density function is symmetric then p(0) =
∫
f2(y)dy. Estimation of p(0) is of extreme

importance in the study of rank-based nonparametric inference problems because it is a basic quantity

involved in the expressions for asymptotic efficiency of rank tests for problems in location shift, analysis of

variance, etc.; see for example, Prakasa Rao (1983), Hall and Marron (1987), Bickel and Ritov (1988) and

the references therein.

Frees (1994) first proposed a kernel estimator for the convolution as follows

p̂(x) =

(
n

2

)−1 ∑
1≤i<j≤n

Khn(x−Xi −Xj), x ∈ IR, (1.2)

where Khn(x) = h−1
n K(x/hn) for some kernel density K(·) and for some bandwidth hn. Later, Saavedra and

Cao (2000) introduced the natural estimator of p(x), defined by plugging in the kernel density estimator f̂
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in place of f in (1.1) and proved the asymptotic normality of the proposed estimator. However Schick and

Wefelmeyer (2007) proved that the two estimators proposed by Frees (1994) and Saavedra and Cao (2000)

were asymptotically equivalent. Hence, we restrict our attention to estimators (1.2). Frees (1994) showed

that under some smoothness assumptions on the density, the convolution function p(·) can be estimated

using (1.2) at the parametric rate n−1/2. Schick and Wefelmeyer (2004) generalized the result and proved
√
n-consistency of the Frees estimator of the convolutions in weighted L1 norms under some additional

moment conditions. They showed that n1/2(p̂− p) converges in distribution to a centered Gaussian process

in L1 norm whose covariance structure matches that of 2f(· −X1). Schick and Wefelmeyer (2007) further

proved
√
n-consistency of the Frees estimator under weaker smoothness assumptions on the density f and

they showed that the same asymptotic normality could still be achieved under those weaker assumptions.

Finally Giné and Mason (2007) derived a functional central limit theorems in Lp, 1 ≤ p ≤ ∞, in the general

setting of Frees (1994), and uniformly in the bandwidth.

The goal of this paper is to study the efficiency of the Frees estimator as in (1.2) for the convolution of a

bounded density f with itself, for a fixed x ∈ IR. The previous works discuss the consistency and asymptotic

properties of (1.2). However the efficiency of this estimator is still not known. In this work we have shown

that the Frees estimator is actually an efficient estimator. This will also imply the efficiency of the Saavedra

and Cao estimator since it is asymptotically equivalent to the Frees estimator. The efficiency criterion used

in this work is that of a least dispersed regular estimator described in Begun et al. (1983), Pfanzagl and

Wefelmeyer (1982) and Schick (1996); see also the monograph by Bickel et al. (1993). This concept is based

on the Hájek-Le Cam convolution theorem for locally asymptotically normal (LAN) families.

The rest of the paper is organized as follows. In Section 2 we state the main result of this work followed

by the proof of the result in Section 3.

2. Result

Let Θ ≡ the set of all bounded Lebesgue densities and X1, X2, · · · be measurable functions which are

independently and identically distributed with distribution Qϑ for each ϑ ∈ Θ. dQϑ = ϑdλ where λ denote

the Lebesgue measure and for a fixed x ∈ IR, let us define κx : Θ→ IR by κx(ϑ) = ϑ∗ϑ(x).

Let h be a measurable function from IR to IRm, for a fixed m ≥ 1 such that
∫
hdF = 0,

∫
||h||2dF <∞,

H =
∫
hhT dF is positive definite and ∆ = {δ ∈ IRm : ||δ|| < 1}. Now let us define a model {fδ,h : δ ∈ ∆}

where fδ,h = f(1 + δT h̃δ) with h̃δ = hδ −
∫
hδdF where hδ = h I(||h|| < ||δ||−1/2/2) for δ ∈ IRm. Now before

stating the main theorem, let us briefly go over few definitions.

Definition 2.1. By a path through f we mean a function π from an open neighborhood ∆π of the origin

into the function space Θ such that π(0) = f .

Remark By construction of fδ,h as above, we have a path π(δ) = fδ,h which defines the model {fδ,h : δ ∈ ∆}.

Definition 2.2. We say that the path π defined by π(δ) = fδ,h is κx-smooth if the following two conditions

are met.

(i) The model {fδ,h : δ ∈ ∆} is Hellinger differentiable at 0 with a positive definite information.

(ii) The function κx ◦ π is differentiable at 0.
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Suppose now Π denote the collection of all such paths. Then we have the following definition.

Definition 2.3. The closed linear span of the tangent set (see, Bickel et al. (1993)) is called the tangent

space generated by Π and is denoted by Π̇. We call Π proper if for every finite-dimensional linear subspace

L of Π̇ there exists a path π ∈ Π with the tangent set containing L.

Equipped with the above definitions (2.1) - (2.3), we propose the following theorem concerning the model

{fδ,h : δ ∈ ∆}.

Theorem 2.4. The model {fδ,h : δ ∈ ∆} has the following properties.

(i) For every δ ∈ ∆, fδ,h is a bounded density.

(ii) The model is Hellinger differentiable at 0 with Hellinger derivative h and invertible information H.

(iii) The function κx(fδ,h) is differentiable at 0 with derivative 2f∗(hf)(x).

In the light of above definitions (2.1) and (2.2), Theorem 2.4 shows that the path π defined by π(δ) = fδ,h

is κx-smooth.

Proposition 2.5. For the path defined by π(δ) = fδ,h, the tangent space Π̇ = L2,0(F ) =
{
ψ : IR→ IR :

∫
ψdF

= 0,
∫
ψ2dF <∞

}
and Π is proper.

Now 2f∗(hf)(x) =
∫

2f(x− y)h(y)f(y)dy =
∫
ghdF with g(y) = 2f(x− y), for all y ∈ IR. Hence κx has

Π-gradient g. A canonical gradient is given by

g∗ = g −
∫
gdF = 2(f(x− y)− f∗f(x)),

which is also the influence function of p̂(x) from the representation given below in (2.3). For the proof of

this representation we refer the reader to the paper Schick and Wefelmeyer (2007). They have shown that,

p̂(x)− p(x) =
2

n

n∑
j=1

[f(x−Xj)− p(x)] + op(n
−1/2). (2.3)

Hence following the efficiency criterion described in Begun et al. (1983), Pfanzagl and Wefelmeyer (1982),

Bickel et al. (1993) and Schick (1996) we say that, since Π is proper and g∗ is a canonical gradient, then

p̂(x) is least dispersed regular for κx and Π, since it has the influence function g∗ from (2.3).

3. Proof

Before giving the proof of Theorem 2.4 let us describe the following lemma in a more general setup which

will be needed to prove the theorem.

Lemma 3.1. Let (Ω,A, {Pϑ : ϑ ∈ Θ}) and (S,S, {Qϑ : ϑ ∈ Θ}) be two experiments and X1, X2, · · · be

measurable functions from Ω into S which are independently and identically distributed with distribution Qϑ

3



under Pϑ for each ϑ ∈ Θ. Let G be a probability measure on S and h be a measurable function from S

to IRk such that
∫
||h||2dG is finite. Suppose ψ be another measurable function from S to IRp such that∫

ψψT dG is well defined and positive definite and the span {aTψ : a ∈ IRp} contains 1. Then there is a

model {Gt : t ∈ ∆} with ∆ an open neighborhood of the origin in IRk with the following properties:

1. G0 = G.

2. For each t ∈ ∆,
∫
ψdGt =

∫
ψdG.

3. The model {Gt : t ∈ ∆} is Hellinger differentiable at 0 with Hellinger derivative

τ = h−
∫
hψT dG

(∫
ψψT dG

)−1

ψ.

4. For every G-integrable function φ,
∫
φdGt →

∫
φdG as t→ 0.

Proof Let C =
∫
hψT dG, Ψ =

∫
ψψT dG and M = CΨ−1. Let A = ||M || denote the euclidean norm of

M . For t ∈ IRk with ||t|| < 1, let ht and ψt be measurable functions such that ||ht|| ≤ ||t||−1/2/2 and

||ψt|| ≤ ||t||−1/2/(2A + 2) and that
∫
||ht − h||2dG → 0 and

∫
||ψt − ψ||2dG → 0 as t → 0. The choices

ht = hI(||h|| < ||t||−1/2/2) and ψt = ψI(||ψ|| < ||t||−1/2/(2A+ 2)) work. Then Ct =
∫
htψ

T dG converges to

C and Ψt =
∫
ψtψ

T dG converges to Ψ as t→ 0. Thus there is a neighborhood ∆ of the origin such that Ψt

is invertible for t ∈ ∆, and the matrix Mt = CtΨ
−1
t , which converges to M , has norm less than A+ 1. For

t ∈ ∆ set h̃t = ht −Mtψt and gt = 1 + tT h̃t. Then ||h̃t|| ≤ ||t||−1/2 and

|gt − 1| ≤ ||t||1/2. (3.4)

Thus gt is positive as ||t|| < 1. Moreover,∫
gtψ

TadG =

∫
ψTadG+ tT [Ct −MtΨt]a =

∫
ψTadG (3.5)

for all a ∈ IRp. For a such that aTψ = 1, we then get
∫
gtdG = 1. This shows that gt is a probability density

function with respect to G. Let now Gt denote the probability measure with density gt with respect to G.

Then G0 = G; by (3.5),
∫
ψdGt =

∫
ψdG; and by (3.4), |

∫
φdGt−

∫
φdG| ≤

∫
|gt−1||φ|dG ≤ ||t||1/2

∫
|φ|dG.

Thus we are left to show the Hellinger differentiability of the model. For this we use the inequality

|
√

1 + x− 1− 1

2
x| ≤ |x|2, |x| < 1/2,

which is derived via a Taylor expansion. Then, for small enough t, we have |tT h̃t|2 ≤ ||t|| < 1/2 and thus∫ (
√
gt − 1− 1

2
tT h̃t

)2

dG ≤
∫
|tT h̃t|4dG ≤ ||t||3

∫
||h̃t||2dG.

Thus we have ∫ (
√
gt − 1− 1

2
tT h̃t

)2

dG = o(||t||2).

It follows from what we have already shown that
∫
||h̃t − τ ||2dG→ 0 as t→ 0. Thus∫ (

√
gt − 1− 1

2
tT τ

)2

dG ≤ 2

∫ (
√
gt − 1− 1

2
tT h̃t

)2

dG+ 2||t||2
∫
||h̃t − τ ||2dG = o(||t||2).

This shows that the model is Hellinger differentiable with the desired Hellinger derivative τ .

We shall now use Lemma 3.1 to prove Theorem 2.4.
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3.1. Proof of Theorem 2.4

(i) Fix a δ ∈ ∆. By the construction of the functions, hδ and h̃δ are measurable functions such that

||hδ|| ≤ ||δ||−1/2/2 and hence ||h̃δ|| ≤ ||δ||−1/2. Then,

||fδ,h − f || = ||f ||||δT h̃δ|| ≤ ||f ||||δ||1/2 ≤ ||f ||.

This implies ||fδ,h|| = ||fδ,h−f+f || ≤ 2||f ||. Hence, fδ,h is bounded. Also
∫
fδ,hdλ =

∫
fdλ+

∫
δT h̃δfdλ = 1

since h̃δ is centered. Therefore, fδ,h is a bounded density function.

(ii) We can prove this by the Lemma 3.1 applied with ψ(x) = 1.

(iii) To prove this part, we will use the following properties of the convolution function.

a. f∗g = g∗f for all bounded density functions f and g.

b. (f + g)∗(f + g) = f∗f + 2f∗g + g∗g.

c. For any x ∈ IR, |f ∗ g|(x) ≤ ||f ||p||g||q, where 1
p + 1

q = 1. In particular, we will use the cases when

p = 1, q =∞ and p = 2, q = 2.

Also, since the model is Hellinger differentiable, so using Proposition 3 of Appendix 5 in Bickel et al. (1993)

we get ||fδ,h − f − δThf ||1 = o(||δ||) as δ → 0. Hence,

D(x) ≡
[
fδ,h∗fδ,h − f∗f − 2δT f∗(hf)

]
(x)

=
[
2f∗

(
fδ,h − f − δThf

)
+ (fδ,h − f) ∗ (fδ,h − f)

]
(x).

Hence,

|D(x)| ≤
[
2|f∗

(
fδ,h − f − δThf

)
|+ | (fδ,h − f) ∗ (fδ,h − f) |

]
(x)

≤ 2||f ||∞||fδ,h − f − δThf ||1 + ||fδ,h − f ||22

≤ 2O(1)o(||δ||) +
(
||
√
fδ,h||∞ + ||

√
f ||∞

)2

||
√
fδ,h −

√
f ||22

≤ o(||δ||).

Therefore,

κx(fδ,h)− κx(f)− 2δT f∗(hf)(x) = o(||δ||).

Hence the function κx(fδ,h) is differentiable at 0 with derivative 2f∗(hf)(x).

3.2. Proof of Proposition 2.5

For any h, Tπh = {
∑m
i=1 aihi : a ∈ IRm} ⊆ L2,0(F ). Hence the tangent set TΠ =

⋃
πh∈Π Tπh ⊆ L2,0(F ).

Conversely, suppose ψ ∈ L2,0(F ). If ψ = 0, then ψ ∈ Tπh for any h (Take a = 0). If ψ 6= 0, then

using Theorem 2.4, we can construct a κx-smooth path πψ such that ψ ∈ Tπψ implying ψ ∈ TΠ. Hence

L2,0(F ) ⊆ TΠ. Therefore TΠ = L2,0(F ) and hence Π̇ = L2,0(F ).

Now suppose L be any finite-dimensional linear subspace of Π̇ with an orthonormal basis [ψ1, ψ2, · · · , ψm]T

and let us define h = [ψ1, ψ2, · · · , ψm]T . Then
∫
hdF = 0 and

∫
hhT dF = I and

Tπh =

{
aTh =

m∑
i=1

aiψi : a ∈ IRm
}

= L.
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Hence Π is proper.
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