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ABSTRACT6

In this article, a modeling approach for the mean annual flow in different segments of Sabine7

river, as released in the NHDPlus data in 2007, as a function of five predictor variables is de-8

scribed. Modeling flow is extremely complex and the deterministic flow models are widely used9

for that purpose. The justification for using these deterministic models comes from the fact10

that the flow is governed by some explicitly stated physical laws. In contrast, in this article,11

this complex issue is addressed from a completely statistical point of view. A semiparametric12

model is proposed to analyze the spatial distribution of the mean annual flow of Sabine river.13

Semiparametric additive models allow explicit consideration of the linear and nonlinear rela-14

tions with relevant explanatory variables. We use a conditionally specified Gaussian model15

for the estimation of the univariate conditional distributions of flow to incorporate auxiliary16

information and this formulation does not require the target variable to be independent.17
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1 Introduction20

One of the primary challenges for the professionals in water sectors is to meet multiple21

water demands within the constraint of limited freshwater supply. The necessity to in-22

tegrate the ecosystem needs is also pronounced in water management. Proper ecosys-23

tem management is paramount to protect the ecological processes and biodiversity. It has24

been noted in some literature that demands for surface water are not expressed freely but25

rather controlled by water rights specifying the location and type of each allowed usage,26

the amount to be used and the priority date when the right is established (see for exam-27

ple, http://www.oregonexplorer.info/willamette/). Therefore, a good understanding of28

available water resources is needed for water professionals to achieve a sustainable water29

system that enriches both this generation and future, while considering the expected future30

climate and other relevant geographical and hydrological parameters.31

As Mylevaganam and Srinivasan (2008) note, contemporary efforts in planning, designing32

and implementing resource management efforts are now at the catchment scale. The reason33

to exploit at the catchment scale is to allow management actions to be carried out unhindered34

until the magnitude of effect reaches to a point where regulation becomes necessary. It has35

also been mentioned in Ziemer (1994) that generalized regulations are usually not efficient and36

usually a higher level of regulation results in more streams being overprotected. The closer37

that the regulations can be tailored to the variables associated with the risk, the less likely38

that proposed management actions are curtailed needlessly, or, conversely, the less likely that39

the regulations are inadequate to protect a desired resource. Added to this, the effect of water40

resources allocation in the upstream of a river basin plays a crucial role in determining the41

state of the downstream water availability. The spatial connectivity of stream networks often42

plays a big role to avoid upstream-downstream conflict. Reliability of a catchment is also43

indirectly linked to the mean annual flow it conveys.44

Further, the availability of hydrological data is also critical for water resources planning.45

Most drainage basins in this world do not have these data because of poorly developed hy-46
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drological networks (Oyebande (2001) and Rodda (2001)). It is also not feasible to establish47

a flow measuring station on every drainage basin (Chiang et al. (2002)) and in addition the48

sheer sizes of some countries make it impossible to develop adequate hydrological networks49

and therefore most drainage basins are ungauged (Tucci et al. (1995)). Therefore, the need50

for hydrological data has greatly increased as water resources which are in some cases scarce51

have to be shared among competing uses.52

Therefore, potential to predict water availability, in other words, mean annual flow at53

a catchment scale considering all the influencing hydrological and geographical parameters54

is paramount. This also greatly enhances the knowledge on hydrological characteristics of55

ungauged basins for water resources planning purposes given the prevailing climate and other56

conditions are of similar nature.57

1.1 Dataset58

In this section we give a brief description of the NHDPlus data. A more detailed description59

of the NHDPlus can be found in the website of Center for Research in Water Resources60

(http://www.crwr.utexas.edu/gis/gishydro08/ArcHydro/NHDPlus.htm).61

According to NHDPlus Users Guide, NHDPlus (Horizon Systems, 2007) is an integrated62

suite of application-ready geospatial data products, incorporating many of the best features63

of the National Hydrography Dataset (NHD), the National Elevation Dataset (NED) and64

the National Watershed Boundary Dataset (WBD) (Holtschlag, 2009). NHDPlus dataset is65

distributed for each region as shown in Figure 1. NHDPlus includes a stream network based66

on the medium resolution NHD (1:100,000 scale), improved networking, feature naming and67

“value-added attributes” (VAA). NHDPlus also includes elevation-derived catchments which68

are produced using a drainage enforcement technique. The VAAs include greatly enhanced ca-69

pabilities for upstream and downstream analysis and modeling. VAA-based routing techniques70

are used to produce the NHDPlus cumulative drainage areas and land cover, temperature and71

precipitation distributions. These cumulative attributes are used to estimate mean annual72
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flow and velocity. The objective of the study is to investigate and propose a lattice based73

mean annual flow predictor for the NHDPlus dataset as released in 2007.74

1.2 Study Area and Sabine Basin Hydrology75

Detailed description of origin and flow of Sabine river and its hydrology is provided in Compre-76

hensive Sabine Watershed Management Plan Report (1999), available at the official website of77

Sabine River Authority of Texas. Below we briefly summarize some of the key points. We refer78

the interested readers to the original report (located at http://www.sra.dst.tx.us/srwmp/79

comprehensive_plan/default.asp) for more detailed description of origin, background and80

hydrology of Sabine river.81

Sabine River, a river in the southwestern United States, rises in northeastern Texas, flows82

southeast and south, broadening near its mouth to form Sabine Lake and continues from Port83

Arthur through Sabine Pass, a dredged navigable channel, to the Gulf of Mexico after a course84

of 578 mi (930 km). It drains 10,400 sq mi (26,950 sq km) entirely in Texas and the Louisiana85

Coastal Plain. The Sabine is a flat-water river that pumps about 6.8 million acre-feet into86

the Gulf and is the single largest volume river in Texas in terms of its discharge. The water87

has the tannin acid brown color that is common in East Texas rivers and streams.88

The Sabine River Authority of Texas was created by the Legislature in 1949 as an official89

agency of the State of Texas. The main purpose of this agency was to act as conservation90

and reclamation district with responsibilities to control, store, preserve and distribute the91

waters of the Sabine River and its tributary streams for useful purposes. The boundaries92

were established by the Act of the Legislature and it comprise all of the area lying within93

the watershed of the Sabine River and its tributary streams within the State of Texas. The94

watershed area includes all parts of twenty-one counties. Figure 2(a) shows the total number95

of catchments available in Texas. We consider the data set of catchments only in the Sabine96

river basin (Figure 2(b)) containing 5,654 catchments.97

The hydrology of Sabine river basin is characterized by diverse climatological, topographi-98
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cal and geological features as well as several climatological factors such as temperature, rainfall99

and humidity. It is known that topography and geologic factors can affect runoff, evapora-100

tion, sedimentation rates, reservoir storage capacity and water quality and define the river101

system within the basin. As mentioned in Comprehensive Sabine Watershed Management102

Plan (1999), the hydrology of the northern region of the basin is significantly different from103

the southern region. These distinct regions are commonly referred to as the “Upper basin”104

in the north and the “Lower basin” in the south, the division between the two areas being105

the headwaters of Toledo Bend Reservoir. The Upper basin is characterized by cool winters,106

hot summers and seasonal rainfall patterns. The Lower basin has a coastal climate with mild107

winters, high annual rainfall and moderate to high humidity. However, in this paper, for the108

modeling purpose we have not considered these two regions separately. We assume that even109

if the two regions are distinct from the hydrological point of view but the flow at any catch-110

ment can be modeled in the same way for both the regions. The flow at any catchment only111

depends on a small number of the neighboring catchments and we assume that the hydrologi-112

cal properties of a particular catchment is not significantly different from the properties of its113

neighboring catchments. The geological factors affect the neighboring catchments similarly in114

each region, and hence affecting the covariates (precipitation, temperature etc) similarly, but115

not necessarily changing the dependence structure among the neighboring catchments.116

In this paper we are going to model the mean annual flow of Sabine river based on the NHD-117

Plus data set released on 2007 in its different catchments based on several relevant variables118

such as length, stream order, temperature, precipitation and slope. Detailed distributions of119

these variables based on our data set are shown in tables 1 and 2.120

The article is organized as follows. In Section 2, we discuss our methodology and implement121

it to model the data. In Section 3 we discuss the implications of the fitted model.122
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2 Data analysis123

The goal of the analysis performed here and the features of the data at hand give precise124

indications about the model to be used. First, it is clear that if an event occurs in a region, it125

is likely to affect the neighboring regions as well, i.e., the events are spatially dependent. The126

second aim consists in estimating the flow distribution as a function of explanatory variables127

because flow can be related to a number of factors, for example, precipitation at the specified128

catchment, temperature, slope of the region etc. For modeling purpose, the logarithmic trans-129

formation of the flow values are considered as a function of relevant explanatory variables.130

By doing this we implement the constraint that the response variable, flow of the river in a131

catchment, is always a non-negative quantity.132

Complex functional relations characterizing the flow of the river and their spatially de-133

pendent structure lead to the adoption of a semiparametric lattice model. In this data we134

have five covariates, namely, precipitation, temperature, slope, length and stream order of the135

catchment. For this study, instead of taking the original values of the first four covariates, we136

take their logarithmic values. The stream order is a variable only taking the values 1 - 11.137

Considering that the logarithm of river flow is a continuous variable and the model should138

include the auxiliary variables, it seems natural to resort to Gaussian models. However,139

the classical Gaussian regression may not be completely adequate since the classical models140

require the target variables to be independent. Thus some modifications are required to141

incorporate the spatial dependence of the flow data. More specifically, we can use the well-142

known conditionally specified Gaussian models (see e.g., Cressie (1993)) so that the spatial143

dependence of the response variable can be taken into account by means of a “conditional144

specification” model of spatial correlation. In such models one incorporate the fact that an145

event observed in a certain geographic region depends on what happens in the neighboring146

regions.147

A model is said to be of a conditional specification type if the joint distribution function148

of the units is built on the basis of the univariate conditional distributions. The conditionally149
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specified Gaussian model approach was first proposed by Besag (1974, 1977). However, the150

conditionally specified Gaussian model defines a structure of spatial dependence but does not151

allow to incorporate auxiliary variables. We have used a semiparametric additive model for152

the mean part in the conditionally specified Gaussian model. Linear effects of the length of153

the river in the catchment and the stream order of the catchment as well as the nonlinear154

effects of precipitation, temperature and slope at a given catchment are included in the model.155

2.1 The semiparametric lattice model156

The spatial models on lattices are analogues of time-series autoregressive models. In time157

domain the dependence relies upon the unidirectional flow of time where the spatial conditional158

approach expresses the dependence of a variable on its nearest neighbor regions. Let Y be159

the n × 1 vector of the dependent variable. The model can now be formalized by explicitly160

writing down the conditional distribution of the dependent variable at i-th catchment:161

f(Yi|{Yj : j 6= i}) = (
√

2πσ)−1 exp

[
−{Yi − µi − γ

∑
j∈Ni

(Yj − µj)}2/2σ2

]
,162

where, E(Yi) = µi for all i = 1, · · · , n, γ is the spatial dependence parameter, σ2 denotes the163

conditional variance of Yi given {Yj : j 6= i}. In the above equation, Ni is the set of neighbors164

for the i-th catchment. For more detailed discussion about the conditionally specified Gaussian165

models, we refer the readers to Cressie (1993). To find the neighborhood structures we look166

at the “ToNode” and “FromNode” of each catchment. “ToNode” is a nationally unique ID167

for the to node (with correct coordinate direction, this is the downstream node) endpoint of168

the flow line. “FromNode” is the same with the upstream node. A number of catchments169

are said to be neighbors if the “ToNode” of the catchments are same as the “FromNode” of170

a particular catchment. The dependence parameter γ is estimated from the neighborhood171
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structure and the mean effect is modeled as172

µi = β0 + β1log(length)i +
11∑
k=2

β2k I(streami = k)173

+f1(log(precip)i) + f2(log(temp)i) + f3(log(slope)i),174

= β0 + β1X1i +
11∑
k=2

β2k I(X2i = k) + f1(X3i) + f2(X4i) + f3(X5i),175

where f1(·), f2(·) and f3(·) are unknown functions describing the effects of precipitation, tem-176

perature and slope, respectively. We will use penalized splines (see Wand, 2003) to model177

these functions. The penalized regression splines representation of the smooth functions is178

given by:179

f`(ti) = α1`ti + α2`t
2
i + · · ·+ αp`t

p
i +

K∑
j=1

δj+p,`|ti − κj,`|p+180

for ` = 1, 2 and 3, where each knot κj,` is associated to a coefficient δj+p,` and x+ =181

max (0, x), x ∈ IR, where the coefficients δj+p,`, j = 1, . . . , K are to be penalized (Wand,182

2003). The number of knots and their positions can be obtained in an adaptive way although183

the sensitivity to this choice is quite low (Ruppert, 2001).184

Remark 1. It is worth mentioning that there may be a situation where one encounters a dry185

season with significant occurrences of no precipitation leading to a number of zero values for186

the flow. In such a situation, one can use the two-stage model for non-negative variables with187

a mass point at zero, as described in Velarde et al.(2004). In this approach, a binary model is188

introduced to describe the presence or not of a zero level and then, conditional on observing a189

level different of zero, the quantity of the variable will be modeled. The probabilistic descrip-190

tion will be a mixture of a discrete and a continuous distribution, generically represented as191

(1− p) + pf(y|y 6= 0), where p = Pr(Y > 0) denotes the probability of Y being greater than192

zero. For more detailed description of the zero-inflated model, see Lambert (1992), Ainsworth193

(2007).194
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2.2 Fitting the model195

The penalized pseudo log likelihood is given by196

L = −
n∑
i=1

log(σ2)/2−
n∑
i=1

[
− {Yi − (Xiβ + Ziδ)− γ

∑
j∈Ni

(Yj − (Xjβ + Zjδ))}2/(2σ2)
]

197

−δTDδ/2,198

where X and β denote the unpenalized part of the covariates and corresponding param-199

eters in the model; Z and δ denote the penalized part of the covariates associated with200

the penalized spline model (Wand, 2003) and corresponding parameters; the matrix D =201

diag(λ1D1, λ2D2, λ3D3) denotes the penalty matrix associated with δ with D1, D2 and D3202

being the penalty matrices corresponding to individual functions f1(·), f2(·) and f3(·), and203

λ1, λ2 and λ3 are respective smoothing parameters.204

We first discuss the model fitting when σ2 is known. To estimate the parameters, we will205

adopt a profiling approach as described in Cressie (1993). For a fixed value of γ, the score206

equations for β and δ are207

0 =
n∑
i=1

X#T
i (γ){Y #

i (γ)−X#
i (γ)β − Z#

i (γ)δ},208

0 =
n∑
i=1

Z#T
i (γ){Y #

i (γ)−X#
i (γ)β − Z#

i (γ)δ}/σ2 − λDδ,209

where we define X#
i (γ) = Xi − γ

∑
j∈Ni

Xj and similarly Y #
i and Z#

i . We can rewrite the210

score equation in a matrix form211

0 =

[
X#(γ)

Z#(γ)

]
V −1{Y #(γ)−X#(γ)β − Z#(γ)δ} −D#(βT , δT )T ,212

where Y # = [Y #
1 , . . . , Y

#
n ]T , V = diag(σ2, . . . , σ2), X# = [X#T

1 , . . . , X#T
n ] and similarly for213

Z# and D# = diag(0, D). Defining W#(γ) =
[ X#(γ)

Z#(γ)

]
, we have214

[
β̂(γ)

δ̂(γ)

]
= [W#(γ)V −1W#(γ)

T
+D#]−1W#(γ)V −1Y #(γ).215
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To estimate γ, we first construct the profile likelihood of γ:216

Lprof(γ) = −{Y #(γ)−X#(γ)β̂(γ)− Z#(γ)δ̂(γ)}TV −1{Y #(γ)−X#(γ)β̂(γ)− Z#(γ)δ̂(γ)}.217

The estimate of γ is then constructed as218

γ̂prof = argmaxγLprof(γ). (2.1)219

Since γ is an scalar parameter, this maximization problem is easy to solve in any standard220

software. The final estimates are given by β̂prof = β̂(γ̂prof) and δ̂prof = δ̂(γ̂prof).221

To estimate the variance, we first fit the model with V = I, that is, using working in-222

dependence assumption. Let the resulting centered residuals be ε̂i, i = 1, . . . , n. Then the223

estimate σ̂2 can be obtained by taking the mean of the squares of the centered residuals, i.e.,224

σ̂2 = n−1
∑n

j=1 ε̂
2
j .225

Remark 2. Instead of using the three-step approach above to estimate the model components,226

one can use the maximum likelihood estimators where one maximizes the full likelihood with227

respect to all parameters. This is reasonable from the theoretical point of view. However, we228

encounter some computational problems and numerical instability issues while maximizing the229

full likelihood with respect to all parameters possibly due to the fact that the maximization230

needs to be jointly done on a large number of parameters. In contrast, for the profiling method231

described above, estimation of β and δ is only a one-step procedure (with closed forms) for232

each value of γ and is computationally much more efficient and fast. Thereafter, estimation233

of γ is only a one-dimensional estimation problem. For further detail on this approach, see234

Cressie (1993).235

2.2.1 Smoothing parameter selection236

Most smoothing parameter selection methods do not perform well in the presence of corre-237

lated errors, as extensive research in the one dimensional case has shown; see Hart (1996)238

and Opsomer, Wang and Yang (2001) for overviews. We adopt the approach as in Francisco-239

Fernandez and Opsomer (2005). In that article the authors propose a smoothing parame-240
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ter selection method based on the generalized cross-validation (GCV) criterion (Craven and241

Wahba (1978)), suitably adjusted for the presence of spatial correlation. They consider select-242

ing the smoothing parameter λ = (λ1, λ2, λ3) that minimizes the following “bias-corrected”243

GCV criterion244

GCV (λ) = n−1
n∑
i=1

(
Yi − Ŷi

1− n−1tr(SΣ)

)2

, (2.2)245

where S is the n × n smoother matrix such that, Ŷ = SY , where Ŷ = [Ŷ1, . . . , Ŷn]T and246

Y is defined similarly, and Σ the correlation matrix of the observations which is given by,247

Σ = (I −C)−1, where C is a n×n matrix with (i, j)-th entry Cij = γ, if the i-th and the j-th248

catchments are neighbors and Cij = 0 otherwise. In general, Σ is unknown and we replace it249

with its estimate Σ̂ in (2.2). To find Σ̂, first note that the correlation matrix depends on the250

unknown parameter γ. We can first estimate γ using the profiling approach described earlier251

and then we can simply plug in the estimate in the expression for Σ to finally get an estimate252

of the correlation matrix. Thereafter, finding the minimizer of this function can be performed253

using numerical algorithms and can be easily implemented in standard statistical softwares.254

2.2.2 Knot selection255

The number of knots suitable to represent the nonlinear effect can be obtained as (Ngo and256

Wand (2004)). A reasonable default rule for the knot locations is: κj = {(j + 1)/(j + 2)}th257

sample quantile of the unique xi’s, for j = 1, · · · , K. A simple default choice of K that usually258

works well is:259

K = max

{
5,min

(
1

4
× number of unique x′is, 35

)}
.260

See Ruppert (2002) for further discussion on default knot specification. The number of knots261

and their positions can also be obtained in an adaptive way although the sensitivity to this262

choice is quite low (Ruppert (1997)).263
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2.3 Results264

In order to analyze the spatial distribution of log(flow) of Sabine river, we model the mean part265

with a quadratic spline (p = 2). The entire analysis is based on the standardized variables.266

The number of knots suitable to represent the nonlinear effects of log(precip), log(temp) and267

log(slope) are fixed to 35 and is obtained as Ngo and Wand (2004). The knots are considered to268

be equidistant. The summary statistics for different variables used in this study are presented269

in Table 1. Table 2 describes the mean and standard deviations of different variables for each270

stream order. The penalty parameters for functions of precipitation, temperature and slope271

are calculated as 0.53, 1.02, 0.06, respectively using the GCV criterion as described earlier.272

For the fitting purposes, we select a grid of 51 equidistant points in the interval [q2(x), q98(x)]273

for each x = precipitation, temperature and slope, where q2(x) and q98(x) denotes the 2nd and274

98th quantiles of x. We estimate the functions on this grid and center the estimates so that275 ∑51
k=1 f̂`(gk,`) = 0, ` = 1, 2, 3, where gk,`, k = 1, . . . , 51 denotes the grid points corresponding to276

that function. We plot each of the covariate’s effect over the grid along with a 95% point-wise277

confidence band. The estimated effects are presented in Figures 3 - 6. The slope parameter278

associated with log(length) is estimated to be 0.89 with a standard error is 0.01.279

From the results, it is evident that mean annual flow increases as log length increases. This280

justifies the spatial pattern of precipitation, draining capacity and their influence on stream281

flow. From the effect of slope, we see that the significance of steepness of catchment slope on282

river flow is also pronounced. From Figures 3 and 4, the logarithm values of precipitation and283

temperature illuminate that these may alone not play a role in determining the stream flow.284

It is evident that the estimated effects are showing nonlinear patterns within small limits in285

the vertical axes. From Figure 3, we see a slight upward trend of effect of precipitation on286

flow. However, the effect becomes flat at the right tail. The connotation is that the type of287

land use pattern plays a remarkable role in abstracting the precipitation before it eventually288

contributes to the stream flow. The stream order effects portray that the basin is of mixed289

nature when it comes to its primary source. There is a possibility of streams being dried in290
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some sections of the basin (higher stream orders).291

Regarding model diagnostics, Figures 7(a) and (b) represent the location-spread plot, that292

is, |Σ̂−1/2(Yi − Ŷi)/σ̂|1/2 against Ŷi, and residual versus predicted values plot for our fitted293

model. It seems there might be heteroscedasticity present in the model. In view of this, we294

refit our model using σ2
i in place of σ2, where the model is,295

log(σ2
i ) = h1(log(precipitationi)) + h2(log(temperaturei)) + h3(log(slopei)).296

We fit this additive model using squared centered residuals from an working independence fit297

of data as response variable and specifying Gaussian likelihood and log-link function. The298

estimates of σ2
i for each individual catchments i = 1, . . . , n are presented in Figure 8 with299

the horizontal dashed line denoting the estimated variance in the homoscedastic case. We300

refit our model using this updated variance estimates. The results are very similar to those301

in Figures 3 - 6 and hence we do not present them. It is interesting to mention that the302

spread-location and residual-predicted values plots of the updated model (not shown here)303

still show some signs of heteroscedasticity. We believe this is due to various other physical304

factors and variables unaccounted in the data. For instance, there are various deterministic305

relationships/physical models describing the relationship between precipitation, temperature306

and slope to river flow. We only look at their relationship from a purely statistical point of307

view and thus do not account for any such physical relationships. This is certainly an area of308

interest and we hope to pursue this as a future direction of our research.309

We also investigate several models apart from the above model. Table 3 describes these310

models and their corresponding AIC values in the homoscedastic case. First column of311

Table 3 describes the model, for example, the first entry of first column ‘stream.order +312

length + f(precip)’ corresponds to the model where we include stream order and standard-313

ized log(length) as linear covariates and standardized log(precipitation) as nonparametrically314

modeled covariate. The second column of the table provides corresponding AIC values. It315

is evident that among the models investigated, the model we fit above with all the variables316

produces least AIC.317
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3 Discussion318

This study defines a lattice based additive model relating catchment properties such as channel319

slope, precipitation, temperature, length of the stream and stream order to mean annual flow.320

Though the model is applied to analyze flow of Sabine rive, this type of model have general321

applicability to other types of such flow network data. Other covariates can also be included322

in the model if available.323

There are several important implication of this model. As noted in Arnold et al. (2000),324

base flow characteristics are essential for efficient development of groundwater resources, and325

for minimizing pollution risks to connected surface water. Therefore the integrated approach326

is necessary to enhance the sustainability of both surface water and ground water. It has327

been also noted in Adane and Foerch (2006) that river systems are often augmented by their328

base flows during lean seasons. The fitted values of stream order intercepts could be used329

to form Base flow Index (BFI) providing a systematic way of assessing the proportion of330

base flow in the total runoff of a catchment. It indicates the influence of soil and geology331

on river flows and is important for low flow studies. In addition, extreme low flow events332

are gradually earning more importance in the emerging field of ecohydrology and are more333

diligently analyzed nowadays (Adane and Foerch, 2006). However, it is often difficult to get334

recorded data on base flows of rivers because many of the catchments in developing countries335

remain ungauged. Our work may provide an indication of the underlying baseflow given the336

climatic and geographical conditions are similar.337

In addition, our model can be used to estimate the rainfall elasticity. Typically, the338

rainfall elasticity of stream flow is defined as the proportional change in mean annual stream339

flow divided by the proportional change in mean annual rainfall (Chiew, 2006). However, this340

definition assumes that the rate of change in flow relative to change in precipitation is the341

same for any level of precipitation, that is, the relationship between flow and precipitation is342

linear. One can use our model to estimate the relationship between flow and precipitation and343

estimate the rainfall elasticity without being constrained by the linearity assumption and also344
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taking into account the change in flow due to other geographical and climatological factors.345

The main limitations of this computation are that it does not consider changes in the346

rainfall frequency and distribution, changes in vegetation characteristics under different cli-347

matic conditions and potential feedbacks between the atmosphere and the land surface. We348

also look at the problem from a purely statistical standpoint and do not take into account349

the different deterministic models relating flow to other variables. One may take into account350

these deterministic models into the statistical formulation to borrow strength and information351

from them. This is one of the future directions of our research.352
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variables min. Q1 median mean Q3 max. st. dev.

log(flow) -8.294 -1.791 -0.399 -0.820 0.560 3.304 2.009

log(precipitation) 6.912 6.985 7.111 7.111 7.230 7.307 0.119

log(temperature) 5.136 5.168 5.195 5.197 5.217 5.293 0.033

log(slope) 0 0.0002 0.002 0.004 0.005 0.211 0.007

log(length) -4.510 -0.488 0.561 0.296 1.240 3.582 1.288

Table 1: The summary statistics (minimum, first quartile (Q1), median, mean, third quartile

(Q3) and maximum) for different variables.

stream order log(flow) log(precip.) log(temp.) log(slope) log(length)

1 -0.58(1.89) 7.10(0.11) 5.19(0.03) 0.010(0.006) 0.41(1.27)

2 -0.98(2.07) 7.11(0.12) 5.20(0.03) 0.002(0.005) 0.23(1.27)

3 -1.02(2.06) 7.12(0.12) 5.20(0.03) 0.001(0.009) 0.18(1.22)

4 -1.49(2.14) 7.14(0.13) 5.21(0.04) 0.001(0.002) 0.13(1.36)

5 -1.36(2.22) 7.08(0.13) 5.18(0.03) 0.001(0.005) 0.17(1.40)

6 -1.05(2.27) 7.13(0.10) 5.20(0.03) 0.001(0.006) 0.18(1.45)

7 -0.81(2.15) 7.24(0.05) 5.23(0.03) 0.002(0.010) 0.29(1.27)

8 -1.68(1.78) 7.30(0.01) 5.26(0.003) 0.000(0.001) 0.07(1.35)

9 -2.38(2.35) 7.30(0.01) 5.26(0.004) 0.0001(0.0002) -0.28(1.42)

10 -1.92(1.91) 7.29(0.005) 5.27(0.005) 0.0002(0.0001) -0.15(1.22)

11 -1.30(1.73) 7.11(0.12) 5.20(0.03) 0.002(0.005) -0.04(1.02)

Table 2: Means and standard deviations (in parentheses) of different variables for each stream

order.
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Model AIC

stream.order + length + f(precip) 6200.72

stream.order + length + f(temp) 6192.73

stream.order + length + f(slope) 6211.16

stream.order + length + f(precip) + f(temp) 6169.06

stream.order + length + f(precip) + f(slope) 6178.41

stream.order + length + f(temp) + f(slope) 6169.43

stream.order + length + f(precip) + f(temp) + f(slope) 6152.28

Table 3: AIC for different models investigated in the data analysis section.
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Figure 1: NHDPlus Region

(a) (b)

Figure 2: (a) River catchments in Texas, (b) Sabine river basin
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Figure 3: Estimated effect of the logarithm of the precipitation values
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Figure 4: Estimated effect of the logarithm of the temperature values
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Figure 5: Estimated effect of the logarithm of the slope values
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Figure 6: Fitted values of the flow values with the stream order
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(a)

(b)

Figure 7: Results from data analysis. Presented are (a) the location-spread plot and (b) plot

of the scaled residual versus predicted values.
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Figure 8: Results from data analysis. Plotted are the estimated variances for each catchment

(points) as estimated from the heteroscedastic model and estimated common variance as

derived from fitting the homoscedastic model (dashed line).
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