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ABSTRACT

Asymptotic distribution of the Discrete Fourier Transformation (DFT) of spatial data under pure

and mixed increasing- domain spatial asymptotic structures are studied under both deterministic

and stochastic spatial sampling designs. The deterministic design is specified by a scaled version

of the integer lattice in IRd while the data-sites under the stochastic spatial design are generated

by a sequence of independent random vectors, with a possibly nonuniform density. A detailed

account of the asymptotic joint distribution of the DFTs of the spatial data is given which, among

other things, highlights the effects of the geometry of the sampling region and the spatial sampling

density on the limit distribution. Further, it is shown that in both deterministic and stochastic

design cases, for “asymptotically distant” frequencies, the DFTs are asymptotically independent,

but this property may be destroyed if the frequencies are “asymptotically close”. Some important

implications of the main results are also given.
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1 Introduction

In recent years, there has been a surge of research interest in the analysis of spatial data using the

frequency domain approach; see for example, Hall and Patil (1994), Im et al. (2007), Fuentes (2002,

2005, 2007), and the references therein. At a heuristic level, the popularity of the frequency domain

approach lies in the fact that for equi-spaced time series data, the discrete Fourier transform (DFT)

of the observations are asymptotically independent (cf. Kawata (1966,1969), Fuller (1976) and

Brockwell and Davis (1991), Lahiri (2003b)). As a result, it allows one to avoid accounting for the

dependence in the data explicitly. However, validity of the asymptotic independence of the DFTs

for spatial data remains largely unexplored. In contrast to the time series case where observations

are usually taken at a regular interval of time and asymptotics is driven by the unidirectional flow of

time, for random processes observed over space, several different types of spatial sampling designs

and spatial asymptotic structures are relevant for practical applications. For example, image data

are equi-spaced in the plane, but locations of the drilling-sites for mineral ores in a mine are usually

irregularly spaced. Thus, the type of asymptotics that are appropriate in these applications are

inherently different. In this paper, the asymptotic properties of the DFT for equi-spaced as well as

irregularly spaced spatial data under different types of spatial asymptotic structures are investigated

in detail.

For spatial data, there are two basic types of spatial asymptotic structures (cf. Cressie (1993)): (i)

pure increasing domain (PID) and (ii) infill. When the neighboring data-sites remain separated

by a minimum positive distance (in the limit) and the sampling region becomes unbounded with

the sample size, one gets the PID asymptotic structure. This is the most common framework used

for studying the large sample properties in the spatial case and may be considered as the spatial

analogue of the asymptotic structure used in the time-series case. In contrast, when the sampling

region remains bounded and the data-sites fill in the sampling region increasingly densely, one gets

the infill asymptotic structure. This kind of asymptotic framework is mainly used in Mining and

other Geostatistical applications. In some situations, a combination of these two frameworks, called

the mixed increasing domain (MID) asymptotic structure is used (cf. Hall and Patil (1994)). Under

MID asymptotics, the sampling region becomes unbounded and at the same time, the distances

between the neighboring sampling sites tend to zero, as the sample size increases.

In this paper, the asymptotic joint distribution of a finite collection of DFTs of spatial data under

the PID and MID asymptotic structures are investigated. It has been noted that the large sample

behaviors of many standard inference procedures under the infill asymptotics are noticeably different

from what can be obtained under the PID or MID asymptotic frameworks; See, for example, Cressie

(1993), Lahiri (1996) , Loh (2005), Stein (1999), Ying (1993) and the references therein. Indeed,

unlike the PID and MID cases, the asymptotic distributions of the DFTs under infill asymptotics

are typically non-normal and the DFTs are typically asymptotically dependent for the general class
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of underlying spatial processes considered here. As a result, the case of pure infill asymptotics is

not considered here and the results are proved only on the PID and MID asymptotic structures for

regularly (gridded) and irregularly spaced spatial data.

To describe the main results of the paper, let {Z(s) : s ∈ IRd} be a zero mean stationary random

field which is observed at finitely many locations SN = {si : i = 1, . . . , N} in the sampling region

D ⊂ IRd. It will be assumed that in the equi-spaced case, the data-sites {si : i = 1, . . . , N} lie on a

scaled version of the integer grid (call it Zd), while in the irregularly spaced spatial data case, the

data-sites are generated by a stochastic sampling scheme. The Discrete Fourier Transform (DFT)

of {Z(s1), . . . , Z(sN )} is given by,

dN (ω) = N−1/2
N∑
j=1

Z(sj) exp
(
ιω
′
sj
)
, ω ∈ IRd, (1.1)

where ι =
√
−1 and B

′
denote the transpose of a matrix B. For ω ∈ IRd, also define

CN (ω) = N−1/2
N∑
j=1

cos(ω
′
sj)Z(sj),

SN (ω) = N−1/2
N∑
j=1

sin(ω
′
sj)Z(sj), (1.2)

the cosine and the sine transforms of the data. Then, dN (ω) = CN (ω)+ιSN (ω). The main findings

of our paper under both deterministic and stochastic sampling designs are:

(i) As in the time series case, under suitable regularity conditions, the asymptotic joint dis-

tributions of finite collections of the sine and cosine transforms are multivariate Gaussian

under both deterministic and stochastic designs. However, in the stochastic design case,

the asymptotic covariance critically depends on the spatial sampling density and the spatial

asymptotic structure (PID vs MID); A complete description of their effects on the resulting

limit distributions is given.

(ii) DFTs at unequal nonzero limiting frequencies are asymptotically independent.

(iii) In the fixed design case, for sampling regions of a general shape and for DFTs at ordinates

converging to a common limiting frequency, asymptotic independence holds if and only if

the ordinates are asymptotically distant. {ωjn} and {ωkn} are called asymptotically distant

if (vol.(D))1/d‖ωjn − ωkn‖ → ∞ as N → ∞. In the stochastic design case, similar result

holds for a general sampling density. Thus, although the data-sites are irregularly spaced, the

asymptotic behavior of the DFTs remains similar to that for regularly spaced spatial data.

This is rather surprising and contrary to the folklore about lack of independence of DFTs for

irregularly spaced time series data.
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(iv) For two discrete Fourier frequency sequences {ω1n} and {ω2n} converging to the zero fre-

quency, the corresponding sine and cosine transforms may exhibit different behavior depend-

ing on whether the frequency sequences approach zero at the same rate (asymptotically sym-

metrically close case) or at a different rate (asymptotically close case). See section 3.1.3 and

section 4.3 for details.

(v) For sampling sites located on the d-dimensional integer grid, DFTs at all discrete Fourier

frequencies are asymptotically independent when the sampling region is cubic. However, this

is false for a sampling region of a general shape (including spheres, hyper-rectangles, etc.).

Also for sampling sites on a scaled version of Zd and a rectangular sampling region, asymptotic

independence holds, provided the grid-increment in each direction is inversely proportional

to the sides of the sampling region.

(vi) Under the stochastic design, for a hyper-rectangular sampling region and a uniform sampling

density, asymptotic independence of DFTs holds even for asymptotically close frequency

sequences. See Section 4 for more details.

Thus, in contrast to the time series case, the geometry of the sampling region plays an important

role in determining the asymptotic independence of the DFTs of spatial data. The main tool used

in the regular-grid case is a discrete version of the Riemann-Lebesgue Lemma (Cf. Section 6) that

may be of some independent interest. For more details on the properties of the DFTs based on

regularly spaced spatial data, see Section 3.

There are several important implications of the main results on asymptotic independence of the

DFTs in the context of statistical inference for spatial data in the frequency domain, particularly

under PID in the stochastic design case. For example, the usual formulation of the frequency domain

bootstrap (FDB) (cf. Franke and Hardle (1992)), which makes use of the asymptotic independence

of the full set of DFTs, may not work for spatial data when the sampling region is non-rectangular.

Similarly, the popular nonparametric estimator of the covariance function of Hall and Patil (1994)

for irregularly spaced spatial data may have a nontrivial bias under PID asymptotic structure and

hence, will be inconsistent. see Section 5 for further discussion and details.

The rest of the paper is organized as follows. In Section 2, the theoretical framework for

studying the asymptotic distributions of the DFTs for equi-spaced and irregularly spaced spatial

data is introduced. In Section 3, the main results for the equi-spaced case under the PID and MID

asymptotic structures are presented, while in Section 4, the results for the stochastic design case

are stated. In Section 5, various implications of the main results are discussed in the context of

frequency domain statistical inference for spatial data. Proofs of the two cases require qualitatively

different arguments and are presented in Sections 6 and 7, respectively.
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2 Theoretical Framework

Throughout the paper, a spatial asymptotic framework as in Lahiri (2003a) will be followed. Denote

the variable driving the asymptotics by n. In Section 2.1, a formulation for the sampling region is

given that is common to both deterministic and stochastic design cases. The descriptions of the

two spatial designs for the regularly- and irregularly-spaced data-sites are next given in Sections

2.2 and 2.3, respectively. Regularity conditions on the random field {Z(·)} are given in Section 2.4.

2.1 Sampling Region

Let D0 be the prototype set for the sampling region D ≡ Dn, satisfying D̃0 ⊂ D0 ⊂ closure(D̃0)

for some open connected subset D̃0 of (−1/2, 1/2]d containing the origin. The sampling region

{Dn : n ≥ 1} is obtained by multiplying the prototype set D0 by λn, where {λn}n≥1 ⊂ [1,∞) is a

sequence of real numbers such that λn ↑ ∞ as n→∞, i.e.,

Dn = λnD0.

It may be noted that under this formulation of the sampling region, sampling regions of a variety

of shapes can be considered, such as polygonal, ellipsoidal, and star-shaped regions that can be

non-convex. Also to avoid pathological cases, it is supposed that for any sequence of real numbers

{bn}n≥1 such that bn → 0+ as n→∞, the number of cubes of the form bn(j + [0, 1)d), j ∈ Zd that

intersects both D0 and Dc0 is of the order O([bn]−(d−1)) as n→∞. This boundary condition holds

for most regions of practical interest.

2.2 Sampling design for regularly-spaced data-sites

To describe the deterministic design case, let ∆ be a d × d diagonal matrix with finite positive

diagonal elements δk, k = 1, · · · , d and let Zd = {∆i : i ∈ Zd}. Thus, the lattice Zd has an

increment δk in the kth direction, k = 1, · · · , d. For the PID, it is assumed that the random process

Z(s) is observed at the sampling sites {s1, · · · , sNn} defined by

{s1, · · · , sNn} = {s ∈ Zd : s ∈ Dn} = Dn ∩ Zd.

Note that under the PID, the sampling sites are separated by a minimum distance δ0 ≡ min{δk :

k = 1, . . . , d} for all n, the sampling region Dn grows to IRd as n → ∞ and the sample size Nn

satisfies the relation

Nn ∼ vol.[∆−1D0]λdn, (2.1)

where vol.[A] denotes the volume (i.e., the Lebesgue measure) of a set A in IRd and for two positive

sequences {sn} and {tn} let us write, sn ∼ tn if limn→∞ sn/tn = 1.
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Next the MID structure in the fixed design case is described. Let {ηn}n≥1 be a sequence of

non-increasing positive real numbers such that ηn ↓ 0 as n → ∞. It is supposed that the random

process Z(s) is observed at the sampling sites {s1, · · · , sNn}, defined by

{s1, · · · , sNn} = {s ∈ ηnZd : s ∈ Dn} = Dn ∩ ηnZd.

Thus, the data-sites {s1, · · · , sNn} are given by the points on the scaled lattice ηnZd that lie in the

sampling region Dn. Under MID, the lattice ηnZd becomes finer as n→∞ and thus, fills any given

region of IRd (and hence, of Dn) with an increasing density. Note that in the MID case,

Nn ∼ vol.[∆−1D0]λdnη
−d, (2.2)

implying that under the MID structure, the sample size Nn is of a larger order of magnitude than

the volume of Dn, given by vol.[∆−1D0]λdn.

2.3 A stochastic sampling design for the irregularly spaced case

Let f(x) be a continuous probability density function on D0 such that the support of f(·) is the

closure of D0. Let {Xk}k≥1 be a sequence of independent and identically distributed (iid) random

vectors with probability density f(x). In the stochastic design case, for simplicity of notation,

denote the sample size by n (Note that in the fixed design case, sample size equals the size of

Dn ∩Zd which need not be equal to n for a given prototype set D0 and for a given sequence {λn},
leading to the notation Nn. But, due to the absence of a regular grid structure, this problem does

not appear in the stochastic design case and one may simply use n to denote the sample size). In

the stochastic design case, the sampling sites si’s are obtained by the following relation

si ≡ sin = λnxi, 1 ≤ i ≤ n.

This formulation improves upon the standard approach to modeling irregularly spaced sampling

sites using a homogeneous Poisson point process. For such a process, the expected number of points

in a region is proportional to the volume of the region and given the total number of points in any

region, the points are independent and form a random sample from the uniform distribution over

the region. However, the formulation here allows the number of sampling sites to grow at a different

rate than the volume of the sampling region and also allows the sampling sites to have a non-uniform

density over the sampling region.

In the stochastic design case, the concepts of the PID and the MID structures are determined

by the relative growth rates of the sample size n and the volume of the sampling region Dn (cf.

Cressie (1993), Lahiri (2003a)). When n/λdn → c∗ for some finite positive constant c∗, it is regarded

as the PID asymptotic structure (cf. (2.1)) under the stochastic design. On the other hand, if

n/λdn →∞ as n→∞, it corresponds to the MID case (cf. (2.2)).
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2.4 Regularity conditions on the random field

Let IN = {1, 2, . . .} denote the set of all positive integers. For p ∈ IN , let Ip denote the identity

matrix of order p. In addition to the standard `2-distance ‖ · ‖, let ‖·‖1 denote the `1 distance on

IRd. Let {Z(s) : s ∈ IRd} be a weakly dependent random field with an integrable autocovariance

function ρ(s) = cov(Z(s), Z(0)). Then, the Z(·)-process has a spectral density ψ on IRd satisfying

ρ(s) =
∫

exp(ιs′ω)ψ(ω)dω, s ∈ IRd. (2.3)

Suppose that the random field Z(·) satisfies a spatial version of the strong mixing condition, which

is defined as follows: For E1, E2 ⊂ IRd, let

α1(E1, E2) = sup
Ai∈σZ(Ei),i=1,2

|P (A1 ∩A2)− P (A1)P (A2)|,

where σZ(E) denotes the σ-algebra generated by the random variables {Z(s) : s ∈ E}. Let

δ(E1, E2) = inf{‖x− s‖1 : x ∈ E1, s ∈ E2}. For a > 0, b > 0, the mixing coefficient of the random

field {Z(·)} is defined as

α(a; b) = sup{α1(E1, E2) : Ei ∈ Cb, i = 1, 2, δ(E1, E2) ≥ a},

where Cb is the collection of d-dimensional sets with volume b or less. Note that in the definition

above, the sets E1, E2 are of finite volumes. For d ≥ 2, this is important (cf. Bradley, 1989, 1993);

unbounded E1’s and E2’s in the definition of the strong mixing coefficient makes the random field

ρ-mixing (which is a smaller class). For simplicity of exposition, further assume that

α(a, b) ≤ γ1(a)γ2(b), a, b ∈ (0,∞), (2.4)

where, without loss of generality (w.l.g.), γ1(·) is a left continuous, non increasing function satisfying

limm→∞ γ1(m) = 0 and γ2(·) is a right continuous, non decreasing function that is bounded for

d = 1 (but it may be unbounded for d > 1) (cf. Lahiri (2003a)).

The following regularity conditions will be used to prove the results.

ASSUMPTIONS

(A.1) There exists a τ ∈ (0,∞) such that E|Z(s)|2+τ < ∞ and
∫∞

1 ad−1γ1(a)
τ

2+τ da < ∞ for some

τ > 0.

(A.2) For d ≥ 2, γ2(b) = o (bκ) as b → ∞, where, with τ is as in (A.1), κ = 2
3(τ−1) for τ ∈ (2,∞)

and κ = 2/3 for τ ∈ (0, 2].

7



3 Results in the regularly-spaced case

3.1 Results under PID

3.1.1 Definition of the DFTs

For the PID asymptotic structure in the equi-spaced case, the discrete Fourier transform (DFT) of

{Z(s1), . . . , Z(sNn)} is given by,

dPn (ω) ≡ N−1/2
n

Nn∑
i=1

Z(si) exp
(
ιω
′
si
)

= N−1/2
n

∑
j∈Jn

Z(∆j) exp
(
ιω
′
∆j
)
, (3.1)

where Jn = {j ∈ Zd : ∆j ∈ Dn} and where recall that ι =
√
−1 and B

′
denote the transpose of a

matrix B. Similarly, for ω ∈ IRd, let us define

CPn (ω) = N−1/2
n

∑
j∈Jn

Z(∆j)cos
(
ω
′
∆j
)
,

SPn (ω) = N−1/2
n

∑
j∈Jn

Z(∆j)sin
(
ω
′
∆j
)
, (3.2)

the cosine and the sine transforms of the data. Then, dPn (ω) = CPn (ω) + ιSPn (ω). Under the fixed

design case with the PID asymptotic structure, the process Z(·) is observed at regularly spaced

locations on the grid Zd. In such a case, the spectrum of the observations is concentrated within

the frequency band

Π∆ ≡ ∆−1(−π, π]d = (−πδ−1
1 , πδ−1

1 ]× . . .× (−πδ−1
d , πδ−1

d ].

The whole frequency space IRd is partitioned into (hyper-)rectangles of volume (2π)d
∏d
i=1 δ

−1
i , and

the spectrum at a given point in the “principal band” Π∆ is obtained by superimposing the spectra

at congruent points from the partition {( i1πδ1 ±
π
δ1

] × . . . × ( i1πδd ±
π
δd

] : (i1, . . . , id)′ ∈ Zd}. Thus,

it is easy to check that the spectral density ψ∆ (say) of the Z(·)-process on the lattice Zd can be

expressed in terms of the spectral density ψ of the continuous stationary process Z(·) as

ψ∆(ω) =
∑
k∈Zd

ψ
(
ω + 2π∆−1k

)
, ω ∈ Π∆. (3.3)

It turns out that the asymptotic distribution of the DFTs in the fixed design PID case depends on

the spatial dependence structure of the random field Z(·) only through ψ∆.

3.1.2 Asymptotic distribution at nonzero frequencies

Consider the asymptotic joint distribution of (dPn (ω1n), · · · , dPn (ωrn)) for a finite collection of fre-

quencies ω1n, . . . ,ωrn, 1 ≤ r < ∞. In analogy to the equi-spaced observations in the time series
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case, here it is supposed that the ωjn’s are of the form

ωjn = 2πλ−1
n ∆−1kjn, kjn ∈ Zd, and ωjn → ωj ∈ Π∆ as n→∞. (3.4)

The first result concerns the asymptotic joint distribution of the cosine and sine transforms

at ω1n, . . . ,ωrn in the case where ±ωj ’s are distinct and nonzero elements of Π0
∆, where Π0

∆ =

(−πδ−1
1 , πδ−1

1 )× . . .× (−πδ−1
d , πδ−1

d ), is the interior of Π∆.

Theorem 3.1. Suppose that, {Z(s) : s ∈ IRd} is a zero mean stationary random field satisfying

assumptions (A.1) and (A.2). Also suppose that for j = 1, . . . , r, r ∈ IN , {ωjn} are sequences of

the form (3.4) such that ωj ∈ Π0
∆ \ {0} and ωj ± ωk ∈ Π0

∆ \ {0} for all 1 ≤ j 6= k ≤ r. Then,

[CPn (ω1n), SPn (ω1n), · · · , CPn (ωrn), SPn (ωrn)] d−→ N [0,Σ], where Σ is a block diagonal matrix with

r blocks of the form AjI2, where, with c0 = 1
2(2π)d/[

∏d
i=1 δi], Aj = c0ψ∆(ωj) for j = 1, · · · , r.

Theorem 3.1 implies that for each single sequence {ωjn} converging to a non-zero frequency

ωj ∈ Π0
∆, the corresponding sine and cosine transforms are asymptotically independent. Fur-

ther, since the covariance matrix of the limiting Gaussian distribution is diagonal, any collection of

disjoint subsets of the 2r cosine and sine transforms are also asymptotically independent. In par-

ticular, under the conditions of the theorem, the DFTs (dPn (ω1n), · · · , dPn (ωrn)) are asymptotically

independent and their asymptotic distribution depends on the dependence structure of the spatial

process {Z(·)} only through the folded spectral density ψ∆(·).
Next consider the case when the limit frequencies are not necessarily distinct. In this case, the

joint asymptotic normality continues to hold under the regularity conditions of Theorem 3.1 on

the random field {Z(·)}. However, the asymptotic independence of the DFTs may no longer hold.

To state the main results in a transparent manner, attention is restricted to the case r = 2 with

a common nonzero limit frequency, although the conclusions do generalize to the case r > 2 in an

obvious manner. Accordingly, consider the asymptotic joint distribution of (dPn (ω1n), dPn (ω2n))
′
,

with ωjn → ωj for j = 1, 2, where ω1 = ω2 = ω 6= 0. Let ω
(p)
1n and ω

(p)
2n denote the p-th ordinate of

the respective vectors ω1n and ω2n, p = 1, · · · , d. The limit behavior of the DFTs can be different

depending on the closeness of the sequences {ω1n} and {ω2n}, as specified below:

Definition: (i) {ω1n} and {ω2n} are called asymptotically distant if

|λn(ω(p)
1n − ω

(p)
2n )| → ∞ as n→∞ for at least one p = 1, . . . , d. (3.5)

(ii) {ω1n} and {ω2n} are called asymptotically close if

λn(ω(p)
1n − ω

(p)
2n )→ 2π∆−1`p as n→∞ for all p = 1, · · · , d

with ` = (`1, . . . , `d)′ ∈ Zd and
∑d

p=1 |`p| 6= 0.

}
(3.6)

Then the following result holds:
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Theorem 3.2. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random field satisfying

Assumptions (A.1) and (A.2). Also, suppose that {ω1n} and {ω2n} are two sequences satisfying

(3.4) with ω1 = ω2 = ω where ω 6= 0 and 2ω ∈ Π0
∆.

(a) (Asymptotically distant frequencies): Under (3.5),

[CPn (ω1n), SPn (ω1n), CPn (ω2n), SPn (ω2n)]
′ d−→ N [0,Σ] , (3.7)

where Σ = c0ψ∆(ω)I4, with c0 = 2−1[(2π)d/
∏d
i=1 δi].

(b) (Asymptotically close frequencies): Under (3.6), (3.7) holds with

Σ =


A1 0 A2 A3

A1 −A3 A2

A1 0

A1

 , (3.8)

where A1 = c0ψ∆(ω), A2 = c0ψ∆(ω)φ1(2π`), and A3 = c0ψ∆(ω)φ2(2π`). Here, φ1(·) and

φ2(·) respectively denote the real and the imaginary parts of the characteristic function of the

uniform distribution on ∆−1D0.

Theorem 3.2 shows that for any two asymptotically distant sequences {ω1n} and {ω2n} of frequen-

cies, all four sine and cosine transforms are asymptotically independent and hence, the correspond-

ing DFT’s are asymptotically independent. However, for asymptotically close frequencies in the

neighborhood of a nonzero frequency ω, this may no longer be true. Theorem 3.2 reveals some

interesting behavior of the sine and the cosine transforms in this case. From the form of the asymp-

totic covariance matrix, it is clear that the sine and the cosine transforms along a given sequence

of ordinates ωjn (with a fixed j ∈ {1, 2}) are asymptotically independent, but any combination

of sine and cosine transforms corresponding to different ordinates (say, one at ωjn and the other

at ωkn for j 6= k) may have a non-zero correlation in the limit. Note that if ∆−1D0 is symmetric

around zero (in the sense x ∈ ∆−1D0 implies −x ∈ ∆−1D0), then the function φ2(·) is identically

zero and the cross-correlation between the sine and cosine transforms vanish (A3 = 0). However,

for sampling regions of a general shape, the correlation between the two cosine transforms need not

vanish, and therefore, the DFTs along ω1n and ω2n are typically not asymptotically independent.

Next consider the important special case, where ∆−1D0 is an integer multiple of (−1
2 ,

1
2 ]d. In

this case, both A2 = 0 and A3 = 0, and therefore, the cross-correlation between the sine and the

cosine transforms vanish in the limit. As a result, the corresponding DFTs are asymptotically

independent. Some instances of this special case are:

(i) δi = 1 for all i = 1, . . . , d, and D0 = (−1/2, 1/2]d.

(ii) The prototype set D0 = (−a1, a1]× . . .× (−ad, ad] for some a1, . . . , ad ∈ (0, 1/2) and δi = a−1
i

for all i = 1, . . . , d.
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Under (i), the spatial sampling sites lie on the integer grid Zd and the sampling region is a

(hyper-)cube in IRd. Here, the DFTs are asymptotically independent even when the frequency

sequences {ω1n} and {ω2n} are asymptotically close. The behavior of the DFTs in this case is

analogous to that for time series data observed over equispaced time points. However, it turns out

that the asymptotic independence of the DFTs at asymptotically close frequencies can also hold

for non-cubic regions and for non-equispaced spatial data-sites. Instance (ii) above corresponds to

a hyper-rectangular sampling region. Here, the same conclusions as in Instance (i) are possible, if

for each i = 1, . . . , d, the grid increment δi in the ith direction is set as the inverse of the length of

the rectangular prototype set in the that direction.

To summarize the main implications of Theorem 3.2, DFTs at asymptotically distant frequencies

are asymptotically independent, and the asymptotic independence of DFTs may also hold for

asymptotically close frequencies in certain special cases. However, for a non-rectangular sampling

region, asymptotic independence of DFTs at asymptotically close ordinates typically fails in the

spatial case, even for regularly spaced sampling sites. Thus, the shape of the sampling region and

the sampling grid plays an important role in determining the behavior of the DFTs in the spatial

case, which sets it apart from the familiar weakly dependent time series set up.

Remark: There is a dual to Theorem 3.2, where ω1 = −ω2 = ω and 2ω ∈ Π0
∆ \ {0}. In

this case, conclusions similar to part (a) of Theorem 3.2 hold if ‖λn(ω1n + ω2n)‖ → ∞. For

λn(ω1n + ω2n)→ 2π∆−1` for some ` ∈ ZZd \ {0}, the asymptotic normality of the cosine and sine

transforms as in (3.7) continues to hold under (A.1) and (A.2), but with the following limiting

covariance matrix:

Σ =


A1 0 A2 A3

A1 A3 −A2

A1 0

A1

 , (3.9)

where A1, A2, A3 are as in part (b) of Theorem 3.2. In particular, for the special cases (i) and (ii)

of cubic and rectangular sampling regions considered above, the asymptotic independence of the

DFTs holds even for the asymptotically close frequencies, but not necessarily for sampling regions

of a general shape.

3.1.3 Asymptotic distribution for the zero limiting frequency

Next consider the case where ωjn’s converge to the zero frequency. Here, some extra care must be

taken while studying the asymptotic behavior of the DFTs due to the special role played by the zero

frequency in the definitions of the sine and cosine transforms. For the zero frequency limit, suppose

that the discrete Fourier ordinates ωn = 2πλ−1
n ∆−1kn satisfy the following regularity condition:

ωn = 2πλ−1
n ∆−1kn, kn ∈ Zd \ {0}, and ωn → 0 as n→∞. (3.10)
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The choice kn = 0 in (3.10) is ruled out in order to avoid some nonstandard asymptotic behavior

of the DFTs. To appreciate why, suppose that kn = 0 along a subsequence and kn 6= 0 along a

different subsequence, but ωn → 0. Then the sine transform is (identically) equal to zero along

the first subsequence, but it has a non-degenerate limit distribution along the other subsequence,

thereby destroying the convergence of the full sequence.

As before, for clarity of exposition, attention is restricted to the asymptotic distribution of the

DFTs along two sequences of frequencies {ωjn}, j = 1, 2 satisfying (3.10). The case of an arbitrary

finite number of such frequency sequences can be handled in a straightforward manner, with added

notational complexity. In comparison to a non-zero limit frequency, three situations arising from

the relative orders of magnitude of the sequences {ωjn}, j = 1, 2 should be considered:

(i) ‖λn(ω1n ± ω2n)‖ → ∞

(ii) Exactly one of the sequences {‖λn(ω1n+ω2n)‖} and {‖λn(ω1n−ω2n)‖} tends to infinity and

the other has a finite limit.

(iii) Both sequences {‖λn(ω1n + ω2n)‖} and {‖λn(ω1n − ω2n)‖} have finite limits.

The first two cases are the analogs of the “asymptotically distant” and “asymptotically close”

cases considered in the last section. However, the situation covered in the third part can occur only

for the zero limit frequency case, as both ω1n and −ω1n can be close to ω2n simultaneously. This

will be referred to as the “asymptotically symmetrically close” case. The asymptotic behaviors of

the cosine- and sine-transforms of spatial data under PID in these three cases are given by the

following theorem.

Theorem 3.3. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random field satisfying

(A.1) and (A.2). Also, suppose that {ω1n} and {ω2n} are two sequences satisfying (3.10).

(a) If ‖λn(ω1n + ω2n)‖ → ∞ and ‖λn(ω1n − ω2n)‖ → ∞, then

[CPn (ω1n), SPn (ω1n), CPn (ω2n), SPn (ω2n)]
′ d−→ N

[
0,Σ(a)

]
, (3.11)

where Σ(a) = c0ψ∆(0)I4.

(b) Suppose that ‖λn(ω1n+ω2n)‖ → ∞ but λn(ω1n−ω2n)→ z12 ∈ IRd. Then, (3.11) holds with

Σ(a) replaced by Σ(b), where Σ(b) has the form as in (3.8) with Ai’s are replaced with A
[0]
i ’s,

for i = 1, 2, 3 where A[0]
1 = c0ψ∆(0), A

[0]
2 = c0ψ∆(0)φ1(∆z12), and A

[0]
3 = c0ψ∆(0)φ2(∆z12).

(c) Suppose that λn(ω1n+ω2n)→ y12 ∈ IRd and λn(ω1n−ω2n)→ z12 ∈ IRd. Then, (3.11) holds

with Σ(a) replaced by Σ(c), where

12



Σ(c) = σ2
∞


[1 + φ̃1(2y1)] φ̃2(2y1) [φ̃1(y12) + φ̃1(z12)] [φ̃1(y12) + φ̃1(z12)]

[1− φ̃1(2y1)] [φ̃2(y12)− φ̃2(z12)] [φ̃1(z12)− φ̃2(y12)]

[1 + φ̃1(2y2)] φ̃2(2y2)

[1− φ̃1(2y2)]


with σ2

∞ = c0ψ∆(0), y1 = (y12 + z12)/2, y2 = (y12 − z12)/2, and φ̃j(ω) = φj(∆ω), ω ∈ IRd,
j = 1, 2.

Thus, from Theorem 3.3, it follows that the sine and the cosine transforms at non-zero ordinates

converging to the zero frequency have very similar asymptotic behavior as in the case of a non-zero

limit frequency for the “asymptotically distant” and “asymptotically close” parts (cf. parts (a)

and (b) of Theorems 3.2 and 3.3). In particular, asymptotic independence of the DFTs continues

to hold for “asymptotically distant” discrete Fourier ordinates converging to zero. For “asymp-

totically close” ordinates converging to zero, DFTs are typically asymptotically dependent; For

such sequences of ordinates, asymptotic independence of the DFTs holds in the special case where

∆−1D0 is an integer multiple of the d-cube (−1/2, 1/2]d, as noted in the discussion of Theorem 3.2

above. Finally, for the “asymptotically symmetrically close” ordinates, it is clear that every pos-

sible pairs of sine and cosine transforms may have nontrivial asymptotic correlations for sampling

regions of a general shape and hence, the DFTs typically are not asymptotically independent.

Next consider the special case where ∆−1D0 is d-cubic. Note that, in this case, φ̃k(yj) =

φk(2π`j) for some `j ∈ Zd \ {0}, for all j, k ∈ {1, 2} and thus, all off-diagonal terms in Σ(c)

vanish. In this special case, asymptotic independence of the DFTs hold even for ‘asymptotically

symmetrically close” ordinates converging to the zero frequency, as in the time series case. But,

for sampling regions of a general shape, the DFTs are typically dependent in the limit in the

‘asymptotically close’ and ‘asymptotically symmetrically close’ cases.

Remark As in the last section, there is a dual to part (b) of Theorem 3.3. For ‖λn(ω1n−ω2n)‖ →
∞ but λn(ω1n + ω2n)→ z12 ∈ IRd, asymptotic normality of the cosine- and sine-transforms holds

where the limiting covariance matrix is given by (3.9) with Ai’s replaced by A[0]
i ’s, i = 1, 2, 3.

Remark For completeness, consider the case where ωn = 0 for all n ≥ 1. In the case, Sn(ωn) = 0

for all n ≥ 1, while Cn(ωn) = N
−1/2
n

∑Nn
i=1 Z(si) and Cn(ωn) →d N(0, 2c0ψ∆(0)) solely under

Assumption (A.1) and (A.2) (cf. Theorem 4.3, Lahiri (2003a))

3.1.4 Results for mean-corrected DFTs

In many applications, the random field {Z(s)} has a mean µ = EZ(0) that is unknown. In such

situations, the DFT defined in Sections 3.1.1 is often replaced by its mean corrected version:

d̃Pn (ω) ≡ N−1/2
n

∑
j∈Jn

[Z(∆j)− Z̄n] exp
(
ιω
′
∆j
)

(3.12)
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where, as before, Jn = {j ∈ Zd : ∆j ∈ Dn} and Z̄n = N−1
n

∑
j∈Jn Z(∆j) is the sample mean.

Similarly, let us define

C̃Pn (ω) = N−1/2
n

∑
j∈Jn

[Z(∆j)− Z̄n]cos
(
ω
′
∆j
)
,

S̃Pn (ω) = N−1/2
n

∑
j∈Jn

[Z(∆j)− Z̄n]sin
(
ω
′
∆j
)
, (3.13)

the mean corrected versions of the cosine and the sine transforms of the data. Then, d̃Pn (ω) =

C̃Pn (ω)+ ιS̃Pn (ω). The following result gives the asymptotic behavior of the DFTs in different cases

treated in Theorems 3.1-3.3.

Theorem 3.4. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random field satisfying

Assumptions (A.1) and (A.2). Also, suppose that {ω1n}, . . . , {ωrn} are sequences satisfying (3.4).

(a) If the limiting frequencies ω1, . . . ,ωr satisfy the conditions of Theorem 3.1, then

[C̃Pn (ω1n), S̃Pn (ω1n), . . . , C̃Pn (ωrn), S̃Pn (ωrn)]

has the same limit distribution as that of the mean uncorrected version [CPn (ω1n), SPn (ω1n),

. . . , CPn (ωrn), SPn (ωrn)], given by Theorem 3.1.

(b) Suppose that r = 2 and the sequences {ω1n}, {ω2n} satisfy the conditions of one of the two

parts of Theorem 3.2. Then, [C̃Pn (ω1n), S̃Pn (ω1n), C̃Pn (ω2n), S̃Pn (ω2n)] →d N [0,Σ], with Σ as

in the respective part of Theorem 3.2.

(c) Suppose that r = 2 and the sequences {ω1n}, {ω2n} satisfy the conditions of any one of the

three parts Theorem 3.3. Then,

[C̃Pn (ω1n), S̃Pn (ω1n), C̃Pn (ω2n), S̃Pn (ω2n)]→d N [0, Σ̃],

where Σ̃ = Σi − Σ0 for the ith part, i = (a), (b), (c) and

Σ0 = σ2
∞


φ̃2

1(y1) 2φ̃1(y1)φ̃2(y1) 2φ̃1(y1)φ̃1(y2) 2φ̃1(y1)φ̃2(y2)

φ̃2
2(y1) 2φ̃1(y2)φ̃2(y1) 2φ̃2(y1)φ̃2(y2)

φ̃2
1(y2) 2φ̃1(y2)φ̃2(y2)

φ̃2
2(y2)

 .

Thus, the asymptotic distributions of the sine and cosine transforms remain unchanged in all

cases where the discrete Fourier frequencies converge to a nonzero limit. However, for frequency

sequences converging to the zero frequency, the asymptotic covariance is different.
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3.2 Results under the MID case

For the MID case, define the discrete Fourier transform (DFT) of {Z(s1), . . . , Z(sNn)} by

dMn (ω) = N−1/2
n

∑
j∈Zd:∆jηn∈Dn

Z(∆jηn) exp
{
ιω
′
∆jηn

}
(3.14)

and the corresponding cosine and sine transforms CMn (ω) and SMn (ω) can be defined in a similar

way. Although for each fixed n, the observations in the deterministic MID case lie on a grid, the

asymptotic distribution of the DFT depends on the dependence structure of the random field {Z(·)}
through the full spectral density function ψ(ω); knowledge of the folded spectral density ψ∆ is no

longer adequate as in the PID case. This is mainly due to the fact that the asymptotic variances

of the relevant transforms in the MID case are given by certain integrals of the auto-covariance

function over IRd as compared to infinite sums in the PID case. Further, the restriction on the

limiting frequencies to lie in the set Π∆ can be dropped, as it is now possible to infer about the full

spectral density ψ(·) by considering the DFT at any given ω ∈ IRd.
For the MID case, the following additional assumption will be used:

(A.3) λnηn →∞.

The following result gives the asymptotic joint distribution of the sine and cosine transforms in the

case of distinct nonzero limits.

Theorem 3.5. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random field satisfying

Assumptions (A.1), (A.2) and (A.3). Also suppose that for r ∈ IN , {ω1n}, . . . , {ωrn} are frequency

sequences of the form ωjn = 2πkjn/λn for kjn ∈ ZZd \ {0} such that kjn → ωj ∈ IRd \ {0} and

ωj ± ωk 6= 0 for all 1 ≤ j 6= k ≤ r. Then, ηd/2n [CMn (ω1n), SMn (ω1n), · · · , CMn (ωrn), SMn (ωrn)]
′ d−→

N [0,Σ], where Σ is a block diagonal matrix with r blocks of the form B`I2 where, B` = 1
2(
∏n
i=1 δi)

−1

(2π)dψ(ω`) for ` = 1, · · · , r.

Theorem 3.5 implies that for ω1n, · · · ,ωrn converging to different non-zero limits, the corresponding

DFTs are also asymptotically independent and the asymptotic variances depend on the spectral

density function of the process at the limiting frequencies ω1, . . . ,ωr. Note that the conditions on

the frequency sequences {ωjn} in Theorem 3.5 are weaker than those required in the PID case (cf.

Theorem 3.1). Also note that the DFTs defined in (3.14) do not have a nondegenerate limit unless

they are rescaled by the damping factor ηd/2n . As the spacing of the grid goes to zero, observations

at neighboring locations tend to have very strong correlations, and as a result, the variances of

the sine and cosine transforms SMn (·) and CMn (·) grow at a rate faster than the sample size. As a

result, the natural scaling by the inverse-square root of the sample size is not adequate under the
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MID, and the additional multiplicative factor ηd/2n is needed to make the sine and cosine transforms

converge to a nondegenerate normal limit.

Remark: Conclusions on the asymptotic independence of the DFTs do not change in the other

scenarios covered by Theorems 3.2-3.4. Specifically, with the additional ηd/2n multiplicative factor,

the sine- and the cosine- transforms in the MID case continue to have the same limits as their PID

counterparts in the set ups of Theorems 3.2-3.4, where the folded spectral density ψ∆ in the limit

is replaced by ψ in every occurrence. The theorems for each of these cases are not restated to save

space.

4 Results under the stochastic design

4.1 Definition of the DFT and some preliminaries

In the stochastic design case, the observations are given by {Z(s1), . . . , Z(sn)}, under both the PID

and the MID asymptotic structures. Thus, define the (scaled) DFT of the sample {Z(s1), . . . , Z(sn)}
under the stochastic design as

ďn(ω) = λd/2n n−1
n∑
j=1

Z(sj) exp
(
ιω
′
sj
)
, ω ∈ IRd (4.1)

for both PID and MID cases. Note that under both asymptotic structures, we use a common

scaling λ
d/2
n , which is asymptotically equivalent to the square root of the sample size under the

PID, but grows at a slower rate (than n1/2) in the MID case. That this is the correct scaling

sequence for a non-degenerate limit in both cases will be clear in the next section where the main

results will be stated. In analogy to (4.1), also define the (scaled) cosine and the sine transforms

of {Z(s1), . . . , Z(sn)} as

Čn(ω) = λd/2n n−1
n∑
j=1

cos(ω
′
sj)Z(sj),

Šn(ω) = λd/2n n−1
n∑
j=1

sin(ω
′
sj)Z(sj), (4.2)

ω ∈ IRd. Then, ďn(ω) = Čn(ω) + ιŠn(ω).

Note that under the stochastic design, the sampling sites are generated by a realization of

the sequence {Xn}. As a consequence, the distributions of the DFTs discussed in this section

actually refer to their conditional distribution given {Xn} and the CLTs under the stochastic design

assert weak convergence of these conditional distributions to respective normal limits for almost all

realizations of the sequence {Xn} under PX, PX denotes the joint distribution of the Xi’s. Also,

for brevity, use the convention that (∞)−1a = 0 for all a ∈ IR. Thus, in the statements of the

theorems below, the condition n/λdn → c∗ ∈ (0,∞], will cover both the cases, c∗ ∈ (0,∞) for the
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PID asymptotic structure and c∗ = ∞ for the MID, in a unified way, and an expression of the

form c−1
∗ a where a ∈ IR, will be interpreted as zero in the MID (i.e., c∗ = ∞) case. Finally, set

K =
∫
f2(x)dx and Iψ =

∫
IRd ψ(ω)dω.

4.2 Asymptotic distribution at nonzero frequencies

In this section, the asymptotic joint distribution of the sine and cosine transforms at a finite

collection of frequencies ω1n, · · · ,ωrn, 1 ≤ r <∞ is investigated, where

ωjn → ωj ∈ IRd as n→∞. (4.3)

Since under the stochastic design the data-sites are randomly distributed, it is not required for the

sequences {ωjn}’s to satisfy (3.4). The first result concerns the asymptotic joint distribution at

ω1n, · · · ,ωrn in the case where ±ωj ’s are distinct and nonzero.

Theorem 4.1. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random field satisfying

(A.1), (A.2) and that it satisfies Assumption (A.4):

(A.4) λn � nε for some ε > 0 and limn→∞ n/λn = c∗ ∈ (0,∞].

Also suppose that for j = 1, · · · , r, r ∈ IN , {ωjn} are sequences satisfying ωjn → ωj ∈ IRd \ {0}
and ωj ± ωk 6= 0 for all 1 ≤ j 6= k ≤ r. Then, [Čn(ω1n), Šn(ω1n), · · · , Čn(ωrn), Šn(ωrn)]

′ d−→
N [0,Σ] , a.s. (PX), where Σ is a block-diagonal matrix with r blocks of the form ǍjI2 with 2Ǎj =

c−1
∗ Iψ +K · (2π)dψ(ωj) and where, K =

∫
f2(x)dx, Iψ =

∫
IRd ψ(ω)dω.

As in the fixed design case, Theorem 4.1 implies that any collection of disjoint subsets of

the 2r cosine and sine transforms are also asymptotically independent. However, the asymptotic

distribution of the DFTs (ďn(ω1n), · · · , ďn(ωrn)) under the stochastic design depends on three

factors, namely, (i) on the dependence structure of the spatial process {Z(·)}, through the spectral

density ψ(·), (ii) on the design density f(·), through the constant K, and (iii) on the spatial

asymptotic framework (PID vs. MID). Note that the asymptotic variance has a somewhat simpler

form under the MID (i.e., c∗ =∞) case where the first term in Ǎj drops out.

Next let us consider the case where the limit frequencies are not necessarily distinct. As before,

to state the main results in a transparent manner, let us restrict our attention to the case r = 2;

The conclusions can be generalized to the case r > 2 in an obvious manner. For z ∈ IRd, define∫
cos(z

′
x)f(x)dx = K1(z) ,

∫
sin(z

′
x)f(x)dx = K2(z),∫

cos(z
′
x)f2(x)dx = K3(z) ,

∫
sin(z

′
x)f2(x)dx = K4(z).

Then the following results hold:
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Theorem 4.2. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random field satisfying As-

sumptions (A.1), (A.2)and (A.4). Also, suppose that {ω1n} and {ω2n} are two sequences satisfying

(4.3) with ω1 = ω2 = ω ∈ IRd \ {0}.

(a) (Asymptotically distant frequencies): Suppose that ‖λn(ω1n − ω2n)‖ → ∞. Then,

[Čn(ω1n), Šn(ω1n), Čn(ω2n), Šn(ω2n)]
′ d−→ N [0,Σ] a.s. (PX). (4.4)

where Σ = ǍI4, with 2Ǎ = c−1
∗ Iψ +K · (2π)dψ(ω).

(b) (Asymptotically close frequencies): Suppose that

λn(ω(p)
1n − ω

(p)
2n )→ zp as n→∞ for all p = 1, · · · , d

with z = (z1, . . . , zd)′ ∈ IRd \ {0}.

}
(4.5)

Then, (4.4) holds with Σ has the form as in (3.8) with Ai’s are replaced with Ǎi’s, for

i = 1, 2, 3 where 2Ǎ1 = c−1
∗ Iψ + K · (2π)dψ(ω), 2Ǎ2 = c−1

∗ IψK1(z) + K3(z)(2π)dψ(ω),

2Ǎ3 = c−1
∗ IψK2(z) +K4(z)(2π)dψ(ω).

Theorem 4.2 gives the asymptotic distribution of the DFTs when both frequency sequences

converge to a common non-zero frequency. Note that the limiting covariance matrix for the asymp-

totically close frequencies depends on the spatial sampling density f(·) through all four functionals

K1(·)-K4(·), and the constant K. This typically makes the corresponding DFTs asymptotically

dependent. In contrast, DFTs along asymptotically distant frequency sequences are asymptotically

independent.

Next, let us consider the special case, where the sampling region D0 is of the form

D0 = (−a1, b1)× . . .× (−ad, bd), (4.6)

for some 0 < aj , bj ≤ 1/2, j = 1, . . . , d and the sampling density f(·) is uniform over D0. In this

case, Ki(z) = 0 for all i = 1, . . . , 4, whenever z is of the form

z =
(

2π`1
a1 + b1

, . . . ,
2π`d
ad + bd

)′
, (4.7)

for some `1, . . . , `d ∈ ZZ with
∑d

j=1 |`j | 6= 0. As a result, asymptotic independence of the DFTs

holds even for asymptotically close frequency sequences {ω1n} and {ω2n}, provided {ω1n} and

{ω2n} satisfy (4.5) for some z of the form (4.7). The asymptotic independence property of the

DFTs can be guaranteed for all distinct asymptotically close sequences if one restricts attention to

DFTs based on frequency sequences of the form

ωn =
(

2πk1n

a1 + b1
, . . . ,

2πkdn
ad + bd

)′
, (4.8)
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with k1n, . . . , kdn ∈ ZZ,
∑d

j=1 |kjn| 6= 0.

Remark: It is worth noting that for a rectangular sampling region (with D0 as in (4.6)), a similar

conclusion on asymptotic independence of the DFTs holds for a more general class of sampling

densities that can be expressed as a convolution of a general probability distribution with a suitable

uniform density. Specifically, the class of such sampling densities is given by F =
{
f : f has

support D0, and f(·) =
∫
g`(· − y)dG`(y) for some probability distribution G` and for some

` ∈ N
}

where g` is the density of the uniform distribution on (−a1
`1
, b1`1 ) × . . . × (−ad

`d
, bd`d ) and

N = {(`1, . . . , `d)′ ∈ ZZd : `j ≥ 2 for all j = 1, . . . , d}.
Remark: As in the deterministic case, there is a dual to Theorem 4.2, where ω1 = −ω2 = ω 6= 0.

The formulation of the dual parallels that in the deterministic case with the Aj ’s in (3.9) replaced

by Ǎj ’s from Theorem 4.2.

4.3 Asymptotic distribution for the zero limiting frequency

Next consider the case where the fourier frequencies converge to the zero frequency. The asymptotic

behavior of the cosine and sine transforms of spatial data under the PID and the MID asymptotic

structures in the stochastic design case are given by the following theorem.

Theorem 4.3. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random field satisfying

Assumptions (A.1), (A.2) and (A.4). Also, suppose that {ω1n} and {ω2n} are two sequences in

IRd \ {0}, converging to 0.

(a) If ‖λn(ω1n + ω2n)‖ → ∞ and ‖λn(ω1n − ω2n)‖ → ∞, then

[Čn(ω1n), Šn(ω1n), Čn(ω2n), Šn(ω2n)]
′ d−→ N

[
0,Σ(a)

]
, a.s. (PX) (4.9)

where Σ(a) = Ǎ[0]I4, with 2Ǎ[0] = c−1
∗ Iψ +K · (2π)dψ(0).

(b) Suppose that ‖λn(ω1n + ω2n)‖ → ∞ but λn(ω1n−ω2n)→ z12 ∈ IRd. Then, (4.9) holds with

Σ(a) replaced by Σ(b), where Σ(b) has the form as in (3.8) with Ai’s are replaced with Ǎ[0]
i ’s, for

i = 1, 2, 3 where 2Ǎ[0]
1 = c−1

∗ Iψ + K · (2π)dψ(0), 2Ǎ[0]
2 = c−1

∗ IψK1(z12) + K3(z12)(2π)dψ(0),

2Ǎ[0]
3 = c−1

∗ IψK2(z12) +K4(z12)(2π)dψ(0)].

(c) Suppose that λn(ω1n + ω2n)→ y12 ∈ IRd and λn(ω1n −ω2n)→ z12 ∈ IRd. Then, (4.9) holds

with Σ(a) replaced by Σ(c), where the elements of Σ(c) are given by

Σ(c)
11 = (c−1

∗ Iψ/2){K1(2y1) + 1}+ (2π)d(ψ(0)/2){K3(2y1) +K},

Σ(c)
12 = c−1

∗ IψK2(2y1) + (2π)dψ(0)K4(2y1),

Σ(c)
13 = c−1

∗ Iψ{K1(y12) +K1(z12)}+ (2π)dψ(0){K3(y12) +K3(z12)},

Σ(c)
14 = c−1

∗ Iψ{K2(y12)−K2(z12)}+ (2π)dψ(0){K4(y12)−K4(z12)},
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Σ(c)
22 = (c−1

∗ Iψ/2){1−K1(2y1)}+ (2π)d(ψ(0)/2){K −K3(2y1)},

Σ(c)
23 = c−1

∗ Iψ{K2(y12) +K2(z12)}+ (2π)dψ(0){K4(y12) +K4(z12)},

Σ(c)
24 = c−1

∗ Iψ{K1(z12)−K1(y12)}+ (2π)dψ(0){K3(z12)−K3(y12)},

Σ(c)
33 = (c−1

∗ Iψ/2){K1(2y2) + 1}+ (2π)d(ψ(0)/2){K3(2y2) +K)},

Σ(c)
34 = c−1

∗ IψK2(2y2) + (2π)dψ(0)K4(2y2),

Σ(c)
44 = (c−1

∗ Iψ/2){1−K1(2y2)}+ (2π)d(ψ(0)/2){K −K3(2y2)},

where y1 = (y12 + z12)/2 and y2 = (y12 − z12)/2.

As in Theorem 3.3, Theorem 4.3 shows that asymptotic independence of DFTs continues to hold

for “asymptotically distant” Fourier frequency sequences converging to zero. For “asymptotically

close” frequencies converging to zero, DFTs are typically asymptotically dependent. In the special

case of the rectangular sampling region with a sampling design f ∈ F , asymptotic independence of

every pair of distinct sine and cosine transforms continues to hold, provided the frequency sequences

are of the form (4.8).

Remark As in the last section, there is a dual to part (b) of Theorem 4.3, which is straight-

forward to formulate. Also, if ωn = 0 for all n ≥ 1, Šn(ωn) = 0 for all n ≥ 1, while Čn(ωn) =

n−1/2
∑n

i=1 Z(si)→d N(0, c−1
∗ Iψ +K(2π)dψ(0)), a.s. (PX). (cf. Lahiri (2003a)).

4.3.1 Results for mean-corrected DFTs

For stochastic design, the mean corrected DFT is defined as follows:

d̃n(ω) ≡ λd/2n n−1
n∑
j=1

[Z(sj)− Z̄n] exp
(
ιω
′
sj
)
, ω ∈ IRd (4.10)

where, Z̄n = n−1
∑n

j=1 Z(sj) is the sample mean. Similarly as before, define the mean corrected

version of the cosine and the sine transforms of the data. The following result gives the asymptotic

behavior of the DFTs in different cases treated in Theorems 4.1-4.3.

Theorem 4.4. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random field satisfying

(A.1), (A.2) and (A.4). Also, suppose that {ω1n}, . . . , {ωrn} are sequences satisfying (4.3).

(a) If {ω1n}, . . . , {ωrn} satisfy the conditions of Theorem 4.1, then [C̃n(ω1n), S̃n(ω1n), . . .,

C̃n(ωrn), S̃n(ωrn)] has the same limit distribution as that of the mean uncorrected version

given by Theorem 4.1.

(b) Suppose that the sequences {ω1n} and {ω2n} satisfy the conditions of one of the two parts of

Theorem 4.2. Then [C̃n(ω1n), S̃n(ω1n), C̃n(ω2n), S̃n(ω2n)] has the same limit distribution as

its mean uncorrected version given by the respective part of Theorem 4.2.
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(c) Suppose that the sequences {ω1n} and {ω2n} satisfy the conditions of any one of the three

parts Theorem 4.3. Then,

[C̃n(ω1n), S̃n(ω1n), C̃n(ω2n), S̃n(ω2n)]→d N [0, Σ̃], a.s. (PX)

where Σ̃ = Σi − Σ0 for the ith part, i = (a), (b), (c) and

Σ0 = σ2
∞


K2

1 (y1) 2K1(y1)K2(y1) 2K1(y1)K1(y2) 2K1(y1)K2(y2)

K2
2 (y1) 2K1(y2)K2(y1) 2K2(y1)K2(y2)

K2
1 (y2) 2K1(y2)K2(y2)

K2
2 (y2)

 ,
with 2σ2

∞ = c−1
∗ Iψ +K · (2π)dψ(0).

Thus, as in the fixed design case, the asymptotic distributions of the sine and cosine transforms

with mean correction remain unchanged in all cases where the Fourier frequencies converge to a

nonzero limit. However, for frequency sequences converging to the zero frequency, the asymptotic

covariance can be different; the correction factor Σ0 in the stochastic design case depends on the

spatial sampling density f(·).

5 Some implications of the main results

The results on asymptotic joint distribution of the DFTs have some important implications for

various frequency domain statistical inference methodologies. For example, the formulation of

the frequency domain bootstrap (FDB) (cf. Franke and Härdle (1992)) critically depends on the

asymptotic independence of the full set of DFTs. The results of Sections 3 and 4 show that

for a sampling region of a general shape and/or for a general sampling density, the DFTs at

asymptotically close ordinates are asymptotically correlated. As a result, formulation of the spatial

version of the FDB must take into account the geometry of the sampling region under both the

designs (i.e., fixed and stochastic) and, in addition, the non-uniformity of the sampling density in

the stochastic design case.

As an example, consider the problem of non-parametric estimation of the spectral density and

the auto-covariance function of the spatial process {Z(·)}. In the regularly spaced data-sites case,

the analogs of the standard time series formulas and bounds on the covariance between the DFTs

(which is O(n−1) where n is the sample size; See Priestley (1981)) no longer holds for a sampling

region of a general shape, as the asymptotic correlation between neighboring DFTs do not vanish.

As a result, consistency of the standard spectral density estimators based on kernel-smoothing of

the sample periodograms need not hold. The situation gets worse in the case of irregularly spaced

data-sites, as in this case, not only the geometry of the sampling region plays a crucial role, but

the sampling density f(·) also has a nontrivial effect on the asymptotic distribution. For consistent
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estimation of the spectral density in the stochastic design case, one must also explicitly estimate

various functionals of f(·) (e.g., the constant K, and the functions K1(·), . . . ,K4(·)) appearing

in the asymptotic covariance matrix of the DFTs (cf. Theorems 4.2 and 4.3). Further, between

the two asymptotic structures under the stochastic design case, the problem of estimating the

spectral density and the auto-covariance function of the Z(·)-process is trickier in the PID case.

This is because under PID, n/λn → c∗ ∈ (0,∞) and the term c−1
∗ Iψ in the asymptotic covariance

matrices must be explicitly estimated. This observation has important implications for the popular

nonparametric estimator of the auto-covariance function given by Hall and Patil (1994). Indeed,

consistency of Hall and Patil (1994)’s estimator under the stochastic design is proved only under

the MID asymptotic structure. Because of the presence of the extra term c−1
∗ Iψ, its consistency is

no longer guaranteed under the PID case.

6 Proofs of the results from Section 3

6.1 Preliminaries

Let U = [0, 1)d denote the unit cube in IRd. Let the autocovariance function of the stationary

random field {Z(s) : s ∈ IRd} be given by ρ(s) = cov(Z(s), Z(0)), s ∈ IRd. Then,

ρ(s) =
∫
IRd

exp (ιs
′
ω)ψ(ω)dω, s ∈ IRd, and

ρ(∆i) =
∫

Π∆

exp (ι[∆i]
′
ω)ψ∆(ω)dω, i ∈ Zd.

Let ν∆(·) denote the uniform distribution on ∆−1D0. Recall that the characteristic function of

ν∆(·) is given by,
∫

exp (ιt
′
x)dν∆(dx) = φ1(t) + ιφ2(t), t ∈ IRd. Let e1, . . . , ed denote the standard

basis of IRd. Thus, e1 = (1, 0, . . . , 0)′, e2 = (0, 1, 0, . . . , 0)′, etc. Let C,C(·) denote generic positive

constants that depend on their arguments (if any), but not on n. Also, unless otherwise specified,

limits in the order symbols are taken by letting n→∞.

The first lemma is a CLT for weighted sums of the form
∑n

i=1wn(si)Z(si) with non-random

weights under the deterministic spatial asymptotic framework as discussed earlier.

Lemma 6.1. Let {Z(s) : s ∈ IRd} be a zero mean stationary random field satisfying (A.1) and

(A.2) and let wn(·) : Dn → IR be a non-random bounded weight function. Suppose that there exists

a function Q : IRd → IR such that for any hn → h in IRd,

lim
n→∞

c−2
n

∑
i:si,si+hn∈Dn

wn(si)wn(si + hn) = Q(h). (6.1)
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where c2
n =

∑Nn
i=1wn(si)2. Let {ηn}n≥1 ⊂ (0,∞) be a nonrandom sequence of real numbers such

that ηn ≡ 1 for all n ≥ 1 in the PID case and ηn ↓ 0 as n→∞ in the MID case. Suppose that

max{w2
n(s) : s ∈ Dn}λdnη−dn c−2

n = O(1). (6.2)

Then, with Nn ≡ |{j : j ∈ Zd, ηnj/λn ∈ ∆−1D0}|,

ηd/2n c−1
n

Nn∑
i=1

wn(si)Z(si)
d−→ N(0, σ2

∞) (6.3)

where σ2
∞ =

∑
i∈Zd ρ(∆i)Q(∆i) for the PID case and σ2

∞ = (
∏d
i=1 δi)

−1
∫
IRd ρ(x)Q(x)dx for the

MID case.

Proof To prove the lemma, the conditions of Theorem 4.3 of Lahiri (2003a) for the PID case and

Theorem 4.2 of Lahiri (2003a) for the MID case shall be verified. First note that under Assumption

(A.1), since γ1(·) is monotone (and left-continuous), there exists a t0 ∈ (0,∞) such that

γ1(t) ≤ t−d(2+τ)/τ for all t ≥ t0.

Write γ0
1(t) ≡ t−d(2+τ)/τ for all t > 0. Since the weight function wn(·) is bounded, by Remark 4.1

and Proposition 4.1 of Lahiri (2003a), it is enough to verify that

γ2(t) = o
( [f−1

1 (t)]d

[tγ0
1(t)f−1

1 (t)]

)
as t→∞, (6.4)

where f1(t) = td
∫ t

1 y
2d−1γ0

1(y)dy, t ∈ [1,∞).

Write τ0 = d(2 + τ)/τ . Then, τ0 > 2d for 0 < τ < 2, τ0 = 2d for τ = 2, and d < τ0 < 2d for

τ ∈ (2,∞). For τ ∈ (2,∞), (6.4) follows from relation (4.4) of Lahiri (2003a) (with τ replaced by

τ0 and a = 0 therein). Next, check that ,

f1(t) = Ctd(1 + o(1)) as t→∞, for 0 < τ < 2.

and,

f1(t) = [td log t](1 + o(1)) as t→∞, for τ = 2.

Consider τ = 2 first. In this case, f−1
1 (t) = d1/d[ t

log t ]
1/d(1 + o(1)) as t→∞ and hence,

[f−1
1 (t)]d/[tγ0

1(t)f−1
1 (t)] = t2[log t]−3(1 + o(1)) as t→∞.

Hence, (6.4) holds. One can similarly establish (6.4) for 0 < τ < 2 using the growth rate of f1(·)
above, as in (4.5) of Lahiri (2003a). The lemma now follows from Theorems 4.2 and 4.3 of Lahiri

(2003a).
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Lemma 6.2. Suppose that D0 be a Borel subset of (−1/2, 1/2]d such that the d-dimensional

Lebesgue measure of its boundary ∂D0 is zero. Let {ηn}n≥1 and Nn be as in Lemma 6.1. Also

let Jn = {j : j ∈ Zd, ηnj/λn ∈ ∆−1D0} and Nn = |Jn|. Then

(a) For any K ∈ (0,∞),

sup
‖z‖≤K

∣∣∣ηdnλ−dn ∑
j∈Jn

exp(ι2πz′jηn/λn)−
∫

∆−1D0

exp(ι2πz′x)dx
∣∣∣→ 0 as n→∞.

(b) (A discrete version of the Reimann-Lebesgue lemma in d-dimension). Let {zn}n≥1 ⊂
IRd be a sequence satisfying ‖zn‖−1 = o(1) and lim supn→∞ |e′iznηn|/λn < 1/2 for all i =

1, . . . , d. Then, ∣∣∣N−1
n

∑
j∈Jn

exp(ι2πz′nj/λn)
∣∣∣→ 0 as n→∞.

Proof For simplicity, first consider the PID case. Then, ηn ≡ 1. Let J1n = {j : (j + U)λ−1
n ⊂

∆−1D0} and let J2n = Jn \J1n. Also for k = 1, 2, write
∑

k for summation over j ∈ Jkn. Part (a) is

a uniform version of the Riemann sum approximation to integrals and can be proved easily. Here

an outline of the proof is given for completeness. For any z ∈ IRd with ||z|| ≤ K,∣∣∣∣∣∣λ−dn
∑
j∈Jn

exp (ι2πz
′
j/λn)−

∫
∆−1D0

exp (ι2πz
′
x)dx

∣∣∣∣∣∣
≤
∑

1

∣∣∣∣∣
∫

(j+U)/λn

[
exp (ι2πz

′
j/λn)− exp (ι2πz

′
x)
]
dx

∣∣∣∣∣
+
∑

2

∣∣∣∣∣
∫

[(j+U)/λn]∩∆−1D0

exp (ι2πz
′
x)dx

∣∣∣∣∣+ λ−dn |J2n|

≤
∑

1

∫
(j+U)/λn

(2π||z||
√
d/λn)dx + 2λ−dn |J2n|

≤ K(2π
√
d)|J1n|λ−d−1

n + 2λ−dn |J2n|.

Part (a) follows from this.

Nest consider part (b). Let φ(·) denote the characteristic function of the uniform distribution

on the unit cube U . Then, it is easy to check that for any ε ∈ (0, 1/2),

inf {|φ(t)| : t ∈ [−π + ε, π − ε]d} ∈ (0, 1]. (6.5)

Also,

λ−dn
∑
j∈J1n

exp (ι2πz
′
nj/λn)φ(2πzn/λn)

= λ−dn
∑
j∈J1n

∫
U

exp (ι2πz
′
n[j + x]/λn)dx

=
∑
j∈J1n

∫
(j+U)/λn

exp (ι2πz
′
nx)dx. (6.6)
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Hence by (6.5) and (6.6) and the Riemann Lebesgue lemma, for any {zn}n≥1 satisfying the condi-

tions of part (b),∣∣∣∣∣∣λ−dn
∑
j∈Jn

exp (ι2πz
′
nj/λn)

∣∣∣∣∣∣
≤ λ−dn

∣∣∣∣∣∣
∑
j∈J1n

exp (ι2πz
′
nj/λn)

∣∣∣∣∣∣+ |J2n|λ−dn

≤
∣∣φ(2πznλ−1

n )
∣∣−1
{∣∣∣∣∫

∆−1D0

exp (ι2πz
′
nx)dx

∣∣∣∣+ |J2n|λ−dn
}

+ |J2n|λ−dn

= o(1).

In the MID case, both parts of Lemma 6.2 can be proved by retracing the above steps with λn

replaced by η−1
n λn in every occurrence and hence the routine details have been omitted.

Remark Note that the conditions imposed on the boundary of D0 in Section 2.1 implies that the

d-dimensional Lebesgue measure of its boundary ∂D0 is zero.

Remark For the MID case, analogs of parts (a) and (b) hold, provided in each appearance, λn is

replaced by λnη−1
n . Thus, Jn should be replaced by J [1]

n ≡ {j ∈ ZZd : ηj/λn ∈ ∆−1D0} and λ−dn in

part (a) is replaced by λ−dn ηdn. In addition, for part (b), Nn is now the sample size under MID.

6.2 Proof of Theorem 3.1

Fix a1, · · · , ar, b1, · · · , br ∈ IR with
∑r

i=1(a2
i + b2i ) 6= 0. Then, we may write,

r∑
p=1

[apCPn (ωpn) + bpS
P
n (ωpn)]

=
∑
j∈Jn

Z(∆j)

N−1/2
n

r∑
p=1

{apcos(ω
′
pn∆j) + bpsin(ω

′
pn∆j)}


=
∑
j∈Jn

Z(∆j)wn(∆j), (say). (6.7)

Hence, to prove Theorem 3.1, it is enough to establish the asymptotic distribution of the weighted

sum in (6.7). Note that, by (3.4), ω
′
jn∆j = 2πλ−1

n k
′
jnj and hence,∑

j∈Jn

w2
n(∆j)

= (2Nn)−1
r∑
p=1

r∑
q=1

apaq ∑
j∈Jn

{
cos(2π(kpn + kqn)

′
j/λn) + cos(2π(kpn − kqn)

′
j/λn)

}
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+apbq
∑
j∈Jn

{
sin(2π(kpn + kqn)

′
j/λn)− sin(2π(kpn − kqn)

′
j/λn)

}
+aqbp

∑
j∈Jn

{
sin(2π(kpn + kqn)

′
j/λn) + sin(2π(kpn − kqn)

′
j/λn)

}

+bpbq
∑
j∈Jn

{
cos(2π(kpn − kqn)

′
j/λn)− cos(2π(kpn + kqn)

′
j/λn)

} . (6.8)

Since under the conditions of Theorem 3.1, 2π(kpn ± kqn)/λn converges to a point in Π0
∆ \ {0} for

all 1 ≤ p 6= q ≤ r, by Lemma 6.2, part (b), it follows that

∑
j∈Jn

w2
n(∆j)→ 1

2

r∑
p=1

(a2
p + b2p).

Also, for any hn → h ∈ IRd, by Lemma 6.2, part (a) and arguments similar to (6.8),

lim
n→∞

∑
i:si,si+hn∈Dn

wn(si)wn(si + hn) =
1
2

r∑
p=1

(a2
p + b2p)cos(ω

′
ph). (6.9)

Hence, by (6.8) and (6.9), condition (6.1) of Lemma 6.1 holds with

Q(h) = [
r∑
p=1

(a2
p + b2p)cos(ω

′
ph)]

/ r∑
p=1

(a2
p + b2p).

Further, by (6.8) and the boundedness of cos(·) and sin(·), condition (6.2) of Lemma 6.1 holds.

Next note that by the inversion formula,

ψ∆(ω) =
1

vol(Π∆)

∑
j∈Zd

ρ(∆j) exp (−2ω
′
∆j), ω ∈ Π∆. (6.10)

Hence, by Lemma 6.1, it follows that,
∑r

p=1[apCPn (ωpn) + bpS
P
n (ωpn)]→d N(0,

∑
j∈Zd ρ(∆j)Q(∆j)

[(1/2)
∑r

p=1(a2
p + b2p)]) = N(0, (1/2)

∑r
p=1(a2

p + b2p)ψ∆(ωp) vol(Π∆)), completing the proof of The-

orem 3.1.

6.3 Proof of Theorem 3.2

Fix a1, a2, b1, b2 ∈ IR with
∑2

i=1(a2
i + b2i ) 6= 0. Then, as in (6.7) we have,

2∑
p=1

[apCPn (ωpn) + bpS
P
n (ωpn)] =

∑
j∈Jn

Z(∆j)wn(∆j), (6.11)

where, wn(s) = N
−1/2
n

∑2
p=1{apcos(ω

′
pns) + bpsin(ω

′
pns)}. Note that for any hn → h ∈ IRd,∑

i:si,si+hn∈Dn

wn(si)wn(si + hn)
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= (2Nn)−1
2∑
p=1

2∑
q=1

apaq ∑
j∈Jn

{
cos(2π(kpn + kqn)

′
jλ−1
n + ω

′
qnhn)+

cos(2π(kpn − kqn)
′
jλ−1
n − ω

′
qnhn)

}
+apbq

∑
j∈Jn

{
sin(2π(kpn + kqn)

′
jλ−1
n + ω

′
qnhn) + sin(2π(kqn − kpn)

′
jλ−1
n + ω

′
qnhn)

}
+aqbp

∑
j∈Jn

{
sin(2π(kpn + kqn)

′
jλ−1
n + ω

′
qnhn)− sin(2π(kqn − kpn)

′
jλ−1
n + ω

′
qnhn)

}

+bpbq
∑
j∈Jn

{
cos(2π(kqn − kpn)

′
jλ−1
n + ω

′
qnhn)− cos(2π(kpn + kqn)

′
jλ−1
n + ω

′
qnhn)

}
(6.12)

Note that, under the conditions of the theorem, for every pair p, q ∈ {1, 2}, {2π[kpn+kqn]} converges

to a non-zero element in (−π/2, π/2)d. Thus, when the frequency sequences {ω1n} and {ω2n} are

asymptotically distant (cf.(3.5)), by Lemma 6.2(b),

lim
n→∞

∑
i:si,si+hn∈Dn

wn(si)wn(si + hn) =
1
2

2∑
p=1

(a2
p + b2p)cos(ω

′
h).

On the other hand, when {ω1n} and {ω2n} satisfy (3.6), by Lemma 6.2, (both parts (a) and (b)),

lim
n→∞

∑
i:si,si+hn∈Dn

wn(si)wn(si + hn)

=
1
2

2∑
p=1

2∑
q=1

[
apaq

∫
cos(2π`

′
pqx− ω

′
h)dν∆(x) + apbq

∫
sin(2π`

′
21x + ω

′
h)dν∆(x)

−aqbp
∫

sin(2π`
′
21x + ω

′
h)dν∆(x) + bpbq

∫
cos(2π`

′
21x + ω

′
h)dν∆(x)

]
,

where, `12 = ` = −`21 and `11 = `22 = 0. The proof of Theorem 3.2 can now be completed using

Lemma 6.1, the inversion formula (6.10) and the arguments in the proof of Theorem 3.1.

6.4 Proof of Theorem 3.3

Fix a1, a2, b1, b2 ∈ IR with
∑2

p=1(a2
p + b2p) 6= 0. Then,

∑2
p=1[apCPn (ωpn) + bpS

P
n (ωpn)] can be

expressed in the from (6.11) and the corresponding weight function wn(·) satisfies (6.12). For part

(c), using Lemma 6.2 in (6.12), for any hn → h ∈ IRd, we get

lim
n→∞

∑
i:si,si+hn∈Dn

wn(si)wn(si + hn)

=
1
2

2∑
p=1

2∑
q=1

[
apaq

{∫
cos(2π(kp + kq)

′
x)dν∆(x) +

∫
cos(2π(kp − kq)

′
x)dν∆(x)

}
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+apbq

{∫
sin(2π(kp + kq)

′
x)dν∆(x) +

∫
sin(2π(kq − kp)

′
x)dν∆(x)

}
+aqbp

{∫
sin(2π(kp + kq)

′
x)dν∆(x)−

∫
sin(2π(kq − kp)

′
x)dν∆(x)

}
+bpbq

{∫
cos(2π(kq − kp)

′
x)dν∆(x)−

∫
cos(2π(kp + kq)

′
x)dν∆(x)

}]
,

where, ki = limn→∞ [λn∆ωin/2π] , i = 1, 2 (which exist as limn→∞ λnωin exist for both i = 1, 2

and are finite). The proof of part (c) now can be completed by applying the inversion formula

(6.10) and the central limit theorem of Lemma 6.1. Parts (a) and (b) can be proved by repeating

the steps in the proofs of parts (a) and (b) of Theorem 3.2 respectively, setting ω = 0. We omit

the details to save space.

6.5 Proof of Theorem 3.4

Fix a1, · · · , ar, b1, · · · , br ∈ IR with
∑r

i=1(a2
i + b2i ) 6= 0. Note that,

r∑
p=1

[apC̃Pn (ωpn) + bpS̃
P
n (ωpn)] =

r∑
p=1

[apCPn (ωpn) + bpS
P
n (ωpn)]−N1/2

n Z̄nβn

=
Nn∑
i=1

Z(si)[wn(si)−N−1/2
n βn] (6.13)

where wn(s) = N
−1/2
n

∑r
p=1{apcos(ω

′
pns)+ bpsin(ω

′
pns)} and βn = N−1

n

∑Nn
i=1

∑r
p=1{apcos(ω

′
pnsi)+

bpsin(ω
′
pnsi)}. Now suppose, ωpn → ω ∈ Π0

∆ \ {0}, for all p = 1, 2, · · · , r. Then by Lemma 6.2(b),

βn → 0. On the other hand, if λnωpn → yp ∈ IRd for all p = 1, 2, · · · , r, then by Lemma 6.2(b),

βn → β ≡
r∑
p=1

{ap
∫

cos(y
′
p∆x)dν∆(x) + bp

∫
sin(y

′
p∆x)dν∆(x)}. (6.14)

For any hn → h ∈ IRd, let Q(h) = limn→∞
∑

i:si,si+hn∈Dn wn(si)wn(si + hn). ¿From the proofs of

theorems 3.1-3.3, it follows that under the hypothesis of each of the parts (a)-(c) of Theorem 3.4,

Q(h) exists. Hence, for any hn → h ∈ IRd,

lim
n→∞

∑
i:si,si+hn∈Dn

(
wn(si)−N−1/2

n βn

)(
wn(si + hn)−N−1/2

n βn

)

=

{
Q(h) : ωpn → ω ∈ Π0

∆ \ {0}, for all p = 1, · · · , r,
Q(h)− β2 : ωpn → 0, for all p = 1, · · · , r.

(6.15)

Note that,

β2 =
r∑
p=1

r∑
q=1

[
apaqφ̃1(yp)φ̃1(yq) + apbqφ̃1(yp)φ̃2(yq)

+aqbpφ̃1(yq)φ̃2(yp) + bpbqφ̃2(yp)φ̃2(yq)
]

(6.16)

The result now follows from (6.13)-(6.16) and Lemma 6.1.
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6.6 Proof of Theorem 3.5

The proof follows by retracing the above steps and employing Lemma 6.1 and 6.2 for the MID case

along with the inversion formula,

ψ(ω) = (2π)−d
∫
ρ(x) exp (−ιω′x)dx, ω ∈ IRd. (6.17)

The routine details are omitted here.

7 Proofs of the results from Section 4

7.1 Preliminaries

Lemma 7.1. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random field satisfying (A.1),

(A.2) and (A.4) and

max {w2
n(s) : s ∈ Dn}s−2

n = O(1), (7.1)

where s2
n = Ew2

n(λnX1). Also, suppose that there exists a function Q1(·) such that for all h ∈ IRd,[∫
w2(λnx)f(x)dx

]−1 ∫
w(λnx + h)w(λnx)f2(x)dx→ Q1(h) as n→∞. (7.2)

(i) If n/λdn → c∗ ∈ (0,∞) as n→∞, then,

(ns2
n)−1/2

n∑
i=1

wn(si)Z(si)
d−→ N

(
0, ρ(0) + c∗

∫
IRd

ρ(x)Q1(x)dx
)

a.s. (PX).

(ii) If n/λdn →∞ as n→∞, then,

(n2λ−dn s2
n)−1/2

n∑
i=1

wn(si)Z(si)
d−→ N

(
0,
∫
IRd

ρ(x)Q1(x)dx
)

a.s. (PX).

Proof : See Lahiri (2003a).

Lemma 7.2. (Multivariate Riemann-Lebesgue Lemma): Let f ∈ L1(IRd). Then,

lim
‖t‖→∞

∫
IRd

f(x)cos(t
′
x)dx = 0 = lim

‖t‖→∞

∫
IRd

f(x)sin(t
′
x)dx.

Proof Follows by approximating f by a sequence of finite linear combinations of indicator functions

of rectangular sets in IRd (which are dense in L1(IRd)) as in the one-dimensional case.
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7.2 Proof of Theorem 4.1

Fix a1, · · · , ar, b1, · · · , br ∈ IR with
∑r

p=1(a2
p+b2p) 6= 0. Let Ĉn(ω) = n−1/2

∑n
j=1 cos(ω

′
sj)Z(sj) and

Ŝn(ω) = n−1/2
∑n

j=1 sin(ω
′
sj)Z(sj), ω ∈ IRd. Note that

r∑
p=1

[apĈn(ωpn) + bpŜn(ωpn)] =
n∑
j=1

Z(sj)wn(sj), (7.3)

where, wn(sj) = n−1/2
∑r

p=1{apcos(ω
′
pnsj) + bpsin(ω

′
pnsj)}. Proceeding similarly as (6.8), we may

write ∫
w2
n(λnx)f(x)dx

= (2n)−1
r∑
p=1

r∑
q=1

[
apaq

∫ {
cos(λn(ωpn + ωqn)

′
x) + cos(λn(ωpn − ωqn)

′
x)
}
f(x)dx

+apbq
∫ {

sin(λn(ωpn + ωqn)
′
x)− sin(λn(ωpn − ωqn)

′
x)
}
f(x)dx

+aqbp
∫ {

sin(λn(ωpn + ωqn)
′
x) + sin(λn(ωpn − ωqn)

′
x)
}
f(x)dx

+bpbq
∫ {

cos(λn(ωpn − ωqn)
′
x)− cos(λn(ωpn + ωqn)

′
x)
}
f(x)dx

]
. (7.4)

Hence under the conditions of Theorem 4.1 and Lemma 7.2, it follows that

n

∫
w2
n(λnx)f(x)dx→ 1

2

r∑
p=1

(a2
p + b2p).

Also, for any h ∈ IRd, by Lemma 7.2 and arguments similar to (7.4),

lim
n→∞

n

∫
wn(λnx + h)wn(λnx)f2(x)dx =

K

2

r∑
p=1

(a2
p + b2p)cos(ω

′
ph). (7.5)

Hence, by (7.4) and (7.5), condition (7.2) holds with

Q1(h) = [K
r∑
p=1

(a2
p + b2p)cos(ω

′
ph)]

/ r∑
p=1

(a2
p + b2p).

Further, by (7.4) and the boundedness of cos(·) and sin(·), condition (7.1) of Lemma 7.1 holds.

Next by the inversion formula as in (6.17), it follows that

r∑
p=1

[apČn(ωpn) + bpŠn(ωpn)]

→d N

0, (c−1
∗ Iψ/2)

r∑
p=1

(a2
p + b2p) + (K/2)(2π)d

r∑
p=1

ψ(ωp)(a2
p + b2p)

 .

This completes the proof of Theorem 4.1.

30



7.3 Proof of Theorem 4.2

Fix a1, a2, b1, b2 ∈ IR with
∑2

i=1(a2
i + b2i ) 6= 0. Then, as in (7.3) we have,

2∑
p=1

[apĈn(ωpn) + bpŜn(ωpn)] =
n∑
j=1

Z(sj)wn(sj), (7.6)

where, wn(s) = n−1/2
∑2

p=1{apcos(ω
′
pns) + bpsin(ω

′
pns)}. Then for any h ∈ IRd,∫

wn(λnx + h)wn(λnx)f2(x)dx

= (2n)−1
2∑
p=1

2∑
q=1

[
apaq

∫ {
cos(λn(ωpn + ωqn)

′
x + ω

′
qnh)

+cos(λn(ωqn − ωpn)
′
x + ω

′
qnh)

}
f2(x)dx

+apbq
∫ {

sin(λn(ωpn + ωqn)
′
x + ω

′
qnh) + sin(λn(ωqn − ωpn)

′
x + ω

′
qnh)

}
f2(x)dx

+aqbp
∫ {

sin(λn(ωpn + ωqn)
′
x + ω

′
qnh)− sin(λn(ωqn − ωpn)

′
x + ω

′
qnh)

}
f2(x)dx

+bpbq
∫ {

cos(λn(ωqn − ωpn)
′
x + ω

′
pnh)− cos(λn(ωpn + ωqn)

′
x + ω

′
qnh)

}
f2(x)dx

]
.

(7.7)

When the frequency sequences {ω1n} and {ω2n} are asymptotically distant, by Lemma 7.2,

lim
n→∞

∫
wn(λnx + h)wn(λnx)f2(x)dx =

K

2
cos(ω

′
h)

2∑
p=1

(a2
p + b2p).

On the other hand, when {ω1n} and {ω2n} satisfy (4.5), then by Lemma 7.2 and proceeding

similarly as in Theorem 3.2, we get the required result.

7.4 Proof of Theorem 4.3

Fix a1, a2, b1, b2 ∈ IR with
∑2

p=1(a2
p+b

2
p) 6= 0. Then,

∑2
p=1[apĈn(ωpn)+bpŜn(ωpn)] can be expressed

in the from (7.6) and the corresponding weight function wn(·) satisfies (7.7). For part (c), for any

h ∈ IRd, we get

lim
n→∞

n

∫
wn(λnx + h)wn(λnx)f2(x)dx

=
1
2

2∑
p=1

2∑
q=1

[
apaq

{∫
cos((yp + yq)

′
x)f2(x)d(x) +

∫
cos((yp − yq)

′
x)f2(x)d(x)

}
+apbq

{∫
sin((yp + yq)

′
x)f2(x)d(x) +

∫
sin((yq − yp)

′
x)f2(x)d(x)

}
+aqbp

{∫
sin((yp + yq)

′
x)f2(x)d(x)−

∫
sin((yq − yp)

′
x)f2(x)d(x)

}
+bpbq

{∫
cos((yq − yp)

′
x)f2(x)d(x)−

∫
cos(yp + yq)

′
x)f2(x)d(x)

}]
,
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where, yi = limn→∞ λnωin, i = 1, 2. The proof of part (c) now can be completed by applying

the inversion formula (6.17) and the central limit theorem of Lemma 7.1. Parts (a) and (b) can

be proved by repeating the steps in the proofs of parts (a) and (b) of Theorem 4.2, respectively,

setting ω = 0. We omit the details to save space.

7.5 Proof of Theorem 4.4

Fix a1, · · · , ar, b1, · · · , br ∈ IR with
∑r

i=1(a2
i + b2i ) 6= 0. With an obvious definition of ˜̂

Cn(ω) and
˜̂
S(ω), we have

r∑
p=1

[ap
˜̂
Cn(ωpn) + bp

˜̂
S(ωpn)] =

n∑
i=1

Z(si)[wn(si)− n−1/2βn] (7.8)

where wn(s) = n−1/2
∑r

p=1{apcos(ω
′
pns) + bpsin(ω

′
pns)} and βn = n−1

∑n
i=1

∑r
p=1{apcos(ω

′
pnsi) +

bpsin(ω
′
pnsi)}. Now suppose, ωpn → ω 6= 0, for all p = 1, 2, · · · , r. Then by SLLN, βn →a.s. 0. On

the other hand, if λnωpn → yp ∈ IRd for all p = 1, 2, · · · , r, then,

βn →a.s. β0 ≡
r∑
p=1

{ap
∫

cos(y
′
px)f(x)d(x) + bp

∫
sin(y

′
px)f(x)d(x)}. (7.9)

Now,

r∑
p=1

[ap
˜̂
Cn(ωpn) + bp

˜̂
S(ωpn)] =

n∑
i=1

Z(si)[wn(si)− n−1/2β0] +Rn (7.10)

where, Rn = (βn − β0)n−1/2
∑n

i=1 Z(si) = op(1), a.s. (PX). Therefore, it is enough to find the

asymptotic distribution for
∑n

i=1 Z(si)[wn(si)− n−1/2β0]. Let w?n(s) = wn(s)− n−1/2β0. Then,

n

∫
w?2n (λnx)f(x)dx = n

∫
w2
n(λnx)f(x)dx− β2

0 + op(1), a.s. (PX). (7.11)

and,

n

∫
w?n(λnx + h)w?n(λnx)f2(x)dx

= n

∫
wn(λnx + h)wn(λnx)f2(x)dx−Kβ2

0 + op(1), a.s. (PX). (7.12)

The results now follow from (7.8)-(7.12) and Lemma 7.1.
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