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Supplementary Material

The supplementary material contains:

(a)
(b)

A complete discussion on the regularity conditions used to establish the
main results in Sections 3 and 5.
The detailed list of supporting lemma along with the proofs.

A Assumptions

Assumptions about the kernel function:

(K)

K(-) is a symmetric and non-negative density function on [—1, 1].

Assumptions about the regression function:

(R1)
(R2)

For every j =1,---,L, 0;(-) has p derivatives.
For every j = 1,---,L, 9](?)(,) satisfies a Lipschitz condition of degree q € (0,1] in a
neighborhood of z.

Assumptions about the bandwidth:

(H1)

h+ (nh)~! = 0as n — oco.

Assumptions about distributions of (X, Z):

(D1)

(D2)

The densities fi, fiz, fijr and fijre, (1 <4 < j < k < £ < n) as defined earlier are
bounded uniformly in large n in neighborhoods of all combinations of arguments. We
also assume for some € > 0,

max sup |fi, (ui; +2)| <oo, max  sup |fii,(ui; + 2, ui, + 2)| < co.
1 \ui1\<e 15:5:1’2|ui3|<6

For € > 0, define

c(z,€) = max sup |m; ji(w+ 2z) —m; ji(2)].
LIk |w|<e

Assume that for some € > 0,

lim sup c(z,€) < co. (A.1)
n—o0
Let g; o1(2) = B(X3X2|Z; = z) if £ # k or E(X}|Z; = 2) if £ = k. Assume that
n~1 o1 9ien(2) fi(z) converges as n — oo and for some € > 0,

n n
limsup sup [n™" > " g; e (u+2)fi(u+2) —n" Y gik(2) fi(2)] < 00
n—oo |u|<e i=1 i=1

(A.2)

This assumption is needed to facilitate computation for the asymptotic covariance of
the estimates. Specifically, our strategy of proofs includes applying WLLN to show that

the term n—1 ¥ 1 BE(XeXik|Z; = z) converges in probability to a fixed quantity (See
Lemma 1). The complication arises because (X;, Z;), i = 1,--- ,n are not assumed to be

iid, not even independent. This is a much complicated situation than the standard VCM
where those are assumed to be iid in which case the standard and simpler assumption is
E(XyX|Z = z) exists and is finite. Since we are considering a more general situation,
we need the assumption (D3) to facilitate the technical argument.
It is also worth mentioning that in the simpler setting of iid VCM a typical assumption
on X is EXJZS < oo fors>2,5=1,---,l (Zhang and Lee (2000)).
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(D4) Define
pijek(21,22) = [E(XiinkaZXjklzi =221,2Zj = 22) fij(21, 22)
—E(XyXiklZ; = 21)E(X;e X k|25 = Z2)fz‘(zl)fj(Z2)]-

Assume for some € > 0,

n

lim n~2 Z sup |pij,en(z1 + u1, 22 + u2)| = 0. (A.3)

noree iAj=1 lu1l<e|uz|<e

This particular assumption is needed in different steps of our proof in lieu of relaxing
the independence condition of (X;, Z;),% = 1,--- ,n which is assumed to be true in the
standard iid VCM literature. Note that p;; ;1 (21, 22) = 0 under the standard assumption
in a typical VCM setup where X; and Z; are independent and hence the assumption in
(D4) is trivially satisfied.

(D5) There exist finite valued functions As; s, (2) and ¥, s, (2) such that with 3;; = cov(e;, e;),

_1Zml 5152 ~ Asys0(%) as n — oo,
n=? D=1 5ijmij,5152 (2)
nT23 1 Bij

Define the L x L matrix A*(z) such that its (j, k)-th element is \j;(2) for j,k=1,...,L
and define the matrix

~ sy s5(2) as m — oo.

VoA (2) viA*(z) ... vpA*(2)
iA*(2) 12A*(2) ... vpr1AT(2)
A= i . ) . , (A4)
UpA*(2) Vpr1A*(2) ... vopA*(2)
where vy, 44,,01,¢2 = 0,--- ,p is as defined in (3.5). Similarly, let us define the L x L

matrix ¥ with ;5 (2) and R(l1,02) = ke, ke, (611€2!) "1 with k, as defined in (3.4)
replacing A (2) and vy, 4¢,.
It is interesting to note that in standard VCM setup where X; and Z; are independent
(See, e.g., Fan and Zhang (1999)) a typical assumption is E(X,Xy|Z = z) exists and
finite for all z (in addition to the assumption that f;(z) exists). This is essentially similar
to the assumption we have made through defining As, s, (2). In our case since we are
also allowing for heteroscedastic models where o2 is a function of both (X;, Z;), we need
to account for it in the definitions of m} () and hence As, 55 (2).
Regarding the expression for ¥, we need tllns definition to cope up with the dependence
structure within the errors. Note that, if the errors are independent as in standard VCMs
this definition of v is not needed.

(D6) Let us define the following quantities for any m,n, k,q € {1,2,---},

pir (2iy) = E(0] (Xay, Zi)) Xiy 041 Ziy = 240),
pimrin (ziy, 2ig) = E(07) (Xiy, Ziy )05y (Xis, Zig) Xiy oy Xiney | Zin = 2iys Ziy = 2is),
Pimin ik (241 Zig» 2iz) = E(O'Z-1 (Xiy, Ziy ol (X%27 Z; ) (Xi3, Zis)
Xirey Xinty Xiges|Ziy = 2iy, Ziy = Zig, Zig = Ziz),
Pimip ik q(z”,zw,zlg,zzq) E(o (Xiy, Ziy ol (Xlz,Z ) (XiS,Zi?,)ag (Xigr Ziy)

211

X

izl3

X0, X

0l Xigeg|Ziy = 2iy1 Ziy = 2ig, Ziy = Zig, Liy = Ziy)-

Note that the p’s as defined above also depend on the indices of variable X. However to
make the notations simple we suppress those indices while defining p.
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We assume for some € > 0,

max sup [p;2 (ui, +2)] < oo, max sup |p(ui, +2)| < oo,
g |<e P Mg |<e

cmax o sup |p;g1(uiy +2,uip +2)] <o, max osup [pg2g2 (i + 2, ui, £ 2)| < oo
tsi8=1, \u,;s\<e tsis=4, |“is|<6

~max _ sup |p;3;1(ui; + 2z, ui, +2)| < oo, max sup |p;2;1,1 (s + 2, Uiy + 2, ui; + 2)| < co.
ig:s=1, ‘Uis‘<5 1°2 1g:5=1,2,3 ‘Ui5‘<€ 1°2°3

(D7) Let us define ¢, = [n~2 Zgﬁj:l Bijl, sn = (nh)~1, and the scaling sequence

nh if tn/sn — c€[0,00),
en = ”2/’2?7&]':1 Bij| if tn/sn — oo,

For any € > 0 let us define the following quantities:

Pirio (2,2, €)

= sup |p;2,2 (wiy + 2, uiy + 2) fiy 40 (usy + 2, usy + 2)
Jugy [<e;s=1,2 172

—piz (i +2)piz (wiy + 2) fir (wiy + 2) fiz (wiy + 2)|;

ﬁi1i2i3 (Z7 25 2, 6)

= sup Ipi25151 (Wi + 2, Uiy + 2, Uiy + 2) figinis (Wi + 2, Uiy + 2, Uiy + 2)
Ju;y|<e€;5=1,2,3 17273

*Pi% (Uil + Z)Pi%ié (uiz + z, Uiy + Z)fh (ui1 + Z)fizi?, (uiz + z,ui5 + Z)|7

Pirigigia (Z, Z,2,2, E)

= sup |pi1iéi1i}1(uil + 2, Uiy + 2, Uiy + 2, Uiy + 2) figigiziy (Wip + 2, Uiy + 2, Uiy + 2,
Jugg [<e;5=1,2,3,4 3

Uiy +2) = pi1 iy (Wiy + 2 uiy + 2)pi1gn (Wig + 2, Uiy + 2) fiyin (wiy + 2, uip + 2)
figiq (Wig + 2,ui, + 2)|.

We assume for some € > 0,

n

Z ﬁilig (2727 6) = Op(’VLQ), (A5)

is=1

s=1,2

n
Z ‘:81213“3211213 (272727 5) = Op(nztn)7 (AG)
521?21,3
n
Z 1BivinBigia|Pirizizia (2,2, 2,2,€) = op(n4t%), (A7)
s:lf,:l ,4

with the understanding that the indices is in the above sums are not equal. Note that
under the standard VCM assumptions (i.e., X; and Z; are independent and the errors
are homoscedastic) the assumptions in (D6) essentially implies that E(X;¢|Z; = z) is
bounded in a local neighborhood of z. This is a reasonable assumption in standard VCM
literature.

As mentioned earlier, in this work we are working under a more general framework
and it is easy to see that the quantities p defined in (D7) are zero when we have the
usual VCMs. Hence the assumptions as in (A.5)-(A.7) as defined in (D7) are practically
redundant. In fact, the last two assumptions in (D7) are trivially satisfied when the
errors are independent. However because of the fact that we are considering a more
general case with heteroscedastic error variance as well as dependence among X; and
Z;, we are compelled to make more complicated assumptions as in (D6) and (D7).
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Assumptions about the weights {ov;}:

(W1) Define
bp = st;p( En \Oéij|)2/ i (i‘%')z'
i=1 j=—o0 i=l

Assume that limsup,,_, o sup; >, a?j < oo and by, —+0asn — 0.
(W2) the covariances 3;; = cov(ej,e5), 1 <4,5 <n, n > 1 satisfy

Jdim 072 1B =0, (A.8)
i#]
oo oo
sup supz |oij| + sup | max Z laij| < o0. (A.9)
n 7 i—1 n =1, ’njzfoo

Under our assumption that €; has finite variance
oo
Bij= > ikt
k=—o0
So, under (A.9),
n
limsup n~! Z |Bij] < oo

(W3) If sp/tn — 0, then Z?,j,k:l BijBik = o(n3ty) as n — oo, where s, and t, are as defined
in (D7).

B Supporting Lemmas

Lemma 1 Under the assumptions (K), (H1), (D2) - (D4),
n
Byjk — nr(r!)71n71 Zm”k(z) =P 0 forr,j,k > 0.
i=1
Proof We start by noting that for r, j,k > 0,
n
E[(nh)™" Y K{(Zi — 2)/h}(Zi — 2)" Xi; Xig /R"T]
i=1

= Bl(nh)™" > B(Xi; Xin Z)K{(Zi — 2)/h}(Z; — )" /h"r]
1=1

=n"'(r)7" Z/mi,jk(wh + 2) K (w)w" dw
i=1

= kr(r)) " In7? Zmi,jk(z) +n ()Tt Z / K (w)w"{m; jr(wh + z) — m; jx(2)}dw.
i=1 i=1
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As a consequence of (A.1), given any § > 0, there exists large enough n, such that the

absolute value of the second term is bounded by
(T!)flc(z,h)/K(w)\fuﬂwdw < 0.

Hence we have for all large enough n,

‘E[ (nh) _IZX”XZ;CK{(Z — )R} (Zi = 2)" /B — k() "Lt Zm”k z)‘ )
i=1

In addition,

varl(nh) ™' " Xy X K{(Z; — 2)/h}(Zi — 2)" /1" r]
=1

= (nh) "> 3" var[Xu X K{(Zi — 2)/h}(Z; — )" [h"r]
i=1

Z (XieXiwK{(Z;i — 2)/h}(Zi — 2)", XjoX i K{(Z; — 2)[h}(Z; — 2)"]/ 1" (r1)2.

The first term is bounded by

(nh)™2 Y BIE(X{, X3 Z0) K {(Z: — 2)/h}(Zi — 2)°7 /0% (11)?]
=1

= (1) ~2(nh) 71/K2 w)er[ 71292 ok wh+z)f1(wh+z)]dw—> 0,
i=1

where g; o1 (2) = B(X2 X2 |Z; = 2) if £ # k or E(X}Y|Z; = 2) if £ = k as defined in (D3).

The last limit holds accordmg to our assumption in (A.2).
Also, for the covariance term in (B.10), we have

/K(wl)wl (w2)w [ -2 Z pij o (wih + z, wgh—&-z)] dwidws — 0,
i#£j=1
by assumption (A.3). Hence, the proof is completed.
Lemma 2 Under the assumptions (D1), (D6), (D7), and (WS3),
G E(||T — E(T)|]*) =P 0.

Proof To start with, let us first note that

N
E{T - E(T){T — E(T)} = Y _ [BE(W;W;W, W) — E(W;W))E(W,W})] Z Sje-
Je=1 7,4=1

A typical element of Sj, is given by

n

4
CORD'S ailjaizjaz-sjam/h“[E[lle{(Zis— 2)/hyoi, (Xi,, Zi ) Zi, — )" X,

is=1,8=1,-,4

HK{ io — 2)/hYoi (Xiy, Zi ) (Ziy — 2)7° Xige,]

<BI[] K{(, - /o, (Xe,, 72.) .~ )" Xi,e,)-
s=3

(B.10)

¢
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There could be the following cases: (1) i1 = i2 = i3 = 14, (2) 41 = i2 = i3 # 14, (3)
i1 =g £ i3 # i4, (4) i1 = i3 £ ig £ ia, (5) i1 = i3 # in = 44, (6) i1 = iz # i3 = i4 and (7)
i1 # d2 # i3 # 4.

To prove this lemma we will follow the same approach as in Robinson (2011) and we
will bound each of this seven terms separately. Let us first consider the first case where all
is are different, i.e., i1 # i2 # i3 # i4. In this case it can be shown that for some constant
C' the term is bounded by

n

Cn™* Z |BiyioBisia|Pirinizgis (2,2, 2, 2, €)
ig=1

s=1,--- 4

for some € > 0. According to the assumption in (A.7) this term is op(t2).
Next consider the case i1 = i2 # i3 # i4. In this case for some constant C' the term is
bounded by

n

Cn=3p~1 Z |Bigis|Pivinis (2,2, 2, €).
ig=1

s=1,2,3

This is op(snty) using (A.6), which is 0p(s2) if tn, = Op(sn) and op(t2) if sp = 0p(tn)-
For the case i1 = i3 # i3 = 44, the term is bounded by the term

Cn_Qh_Qﬁiliz (2,2,€) = op(s2).

Next we consider the case when i; = i3 # i2 # i4. The first term of the sum can be
bounded by,

n
Cn74h71 Iﬁi1i2||ﬁ’i1i3| sup |pi2i1i1 (ui1 + 2, Uiy + 2, Uiy +Z)|
1°2°3
S u;  |<e
321?21,3 s=1,2,3

X SUP  fiyigis (Wiy + 2, Uiy + 2, Uy + 2).
Jujgl<e

s=1,2,3

The second term is bounded by

n
Cn™* " |BiigllBiyis| sup pizig (wiy + 2 uiy +2)[ sup fiyip (wiy +2,ui, +2)
Pt ugyl<e lug |<e
s=1,2,3 s=1,2 s=1,2

sup  |p;1;1 (wiy + 2, ui5 +2)| sup figig (uiy +2,ui5 + 2).
Ju; g [<e luggl<e

s=1,3 s=1,3

According to our assumptions in (D1), (D6) and (W3), each of these terms are op(sntn).
Now consider the case when 41 = i3 # i2 = i4. In this case the first term is bounded by

n
—4y -2 2
Cn~*h2 3" |87, sup |piziz (wiy + 2wy +2)| sup  fiyiy (wiy + 2, uiy + 2).
is=1 \uis\<e |uis\<e
s=1,2 s=1,2 s=1,2

The second term is bounded by
n
Cn~* Z |612112| sup ‘p?hé (uiy + 2, ui, +2)| sup fr?lig(“h + 2, Uiy + 2).

ig=1 lujgl<e lugg l<e

s=1,2 s=1,2 s=1,2
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Again, according to our assumptions in (D1), (D6) and (W3), the first term is Op(s2ty)
and the second term is op(s2ty).

For the case i1 = ig = i3 # 44 it can be shown that the first term is bounded by

n
Cn_4h_2 Z Iﬁiﬂz' sup ‘pl“%l% (uil + Z, Uijg + z)‘ sup fi1i2 (uil + z, Uijg + Z),
ig=1 Jujgl<e luggl<e

s=1,2 s=1,2 s=1,2

and the second term is bounded by

n
Cn=*h~! Z |5i1i2| sup ‘pi2(ui1 +z)| sup fi1(ui1 +2)

1
is=1 Juiy |<e luig [<e

s=1,2

X sup |ﬂi%i;(uz‘1 +2z,uiy +2)| sup  fiyip (wiy + 2, uiy + 2).
luggl<e lujgl<e

s=1,2 s=1,2

Then according to (D1), (D6) and (W3), both of the above terms are Op(s2ty,) and op(s2tn)
respectively.

Lastly, let us consider the case when all is are equal. In this case, it can be shown that
the first and the second term are bounded by

Cn~4h=3 Z sup |Pi411(ui1 +2)| sup fi, (ui; +2), and

i1=1lwig|<e Juiy |<e
n
—44 -2 2 2
Cn™*h g sup |pi2 (wiy +2)| sup  f7 (ui; +2),
ii=1luigl<e 1 luiy [<e

respectively. Again, according to our assumptions as in (D1) and (D6) these terms are
Op(s?) and op(s3) respectively.

Lemma 3 Under assumptions (K), (H1), (D1) - (D6), and (W3),
enEB(T) =P .

Proof We start the proof by first observing that there can be four types of terms in E(T).
A typical element of E(T) is, up to a term of op(cy '), for r1 # ro and s1 # s2,

D= (nh)2(rilra) "ty > ﬁikE[K{(Zi —2)/RYK{(Zy — 2)/R}(Zs — 2)" (Zs, — 2)™2

i=1 k=1

Xm:k,swz (Zi7 Zk)/ther]

n
=n"2(rlra) 7t Z Bik/K(wl)K(wg)wIIwgszk’ﬂsQ(wlh+z,w2h+z)dw1dw2
i£k=1

n
—l—n_zh_l(rl!rgl)_lz:/K'Q(w)w’"l""’?m;S152 (wh + 2z)dw
i=1

n n

= Ky Ry (T1!72!) "I 72 Z Bik Mk 5155 (%5 2) + Vri4ry (nh)~1 [nfl me,slw (z)]
i#k=1 i=1

= tntsis9(2) + SnAsy sz (2)

Now we observe that

SnAsy sy (2) when tn/sp — 0;
D ~ { sn(cths;s0(2) + Asys5(2)) when tn/sp — c € (0,00);
tnts, so(2) when tn/sp — 0.

The result now follows by definition of A, ¥ and X' as defined in Section A.
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Lemma 4 Under assumptions (K), (H1), (D1), (D7), and (W1),
N
E[Y_w]] = o(1).
j=1

Proof Proceeding in the similar way as in Lemma 2, we can prove this result. To maintain
brevity we omit the details.

Lemma 5 Let T = Z;V:1 WjWJ’- where W; is as defined in Eqn. (5.11). Define the ma-
triz P such that PP’ = T. Then under assumptions (K), (H1), (D1), (D7), (W1) and
conditional on Z,

N
P71y " Wie; = N(0,I). (B.11)
j=1

Proof To prove (B.11), we need to show that for any unit vector v, conditional on Z,

N N
o' PTY ZW]'E]' = ijej %d N(O,l),
j=1 j=1

where wj = v'P7IW;. Let Fpj = 0(X1n, s Xjn, Zins -+ Zjn)s j = 1,---, N be the
filtration generated by the process (X, Z), for positive integer N = N,,, increasing with n.
Then wje; is a martingale with respect to Fy ; with Zévzl wje; being a martingale with
respect to F, N

Then for any n > 0,

N
ZE[U}?C?l(‘U}JE]‘ > 77)|X17 e 7X’n7Z17~ .. »Z’ﬂ]
j=1

N N
< Y WIEENSE > /)| X0, Xn, Z1, o ] + D wd(w] > nd)
j=1 j=1
N
< max E[21(2 > 1/8)] + (n6) "+ Y wi.
: :
j=1

This implies

N N
Y Elwiei1(lwje;| > n)] < mjaxE[efl(ei >n/8)]+ (m8) " Y B(w)).
=1 j=1

(B.12)

In (B.12), the inequality is still valid since we have positive random variables at both sides.
Hence using Lemma 4 and the fact that the first term in (B.12) can be made arbitrarily small,
the asymptotic normality of Z;VZI wj€; is confirmed (e.g., see Scott (1973)). Therefore, using

Cramer-Wold device, the convergence of P! E;VZI We; is obtained.



