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ABSTRACT

In this paper, we consider estimation of the mean squared prediction error (MSPE) of

the best linear predictor of (possibly) nonlinear functions of finitely many future observa-

tions in a stationary time series. We develop a resampling methodology for estimating the

MSPE when the unknown parameters in the best linear predictor are estimated. Further, we

propose a bias corrected MSPE estimator based on the bootstrap and establish its second

order accuracy. Finite sample properties of the method are investigated through a simulation

study.
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1 Introduction

Let {Xt}∞t=−∞ be a second order stationary time series with auto-covariance function γ(·)
and spectral density f(·). Suppose that a finite stretch, X1, . . . , Xn of the series is observed.

In many applications, it is important to predict an unobserved future value Xn+k in the time

series or more generally, a suitable functional of a set of future values Xn+1, . . . , Xn+k:

Ψ = ψ(Xn+1, . . . , Xn+k)

where ψ : IRk → IR is a known function and k ∈ IN . Here and in the following, IN and

ZZ respectively denote the set of all positive integers and the set of all integers. A popular

predictor of Ψ is given by the best linear predictor (BLP) Ψ̃n = α1X1 + . . .+ αnXn, where

(λ1, . . . , λn) = argmina1,...,anE
(

Ψ− [a1X1 + . . .+ anXn]
)2

. (1.1)

The co-efficients λ1, . . . , λn can be found by standard optimization arguments from calculus;

See (2.1), Section 2 below for an explicit expression for λ1, . . . , λn. Typically, λ1, . . . , λn in Ψ̃n

depend on the auto-covariance function γ(·) and, for a nonlinear ψ(·), on other population

parameters of the {Xt}-process and hence, are typically unknown in practice. In this paper,

we restrict attention to parametric time series models and highlight the dependence of the

BLP on the underlying parameters by writing

Ψ̃n = Ψ̃n(θ)

where θ ∈ IRp (p ∈ IN) is the vector of unknown parameters of the {Xt}-process. Since

Ψ̃(θ) depends on unknown θ, it is not usable in practice. A common approach is to plug-in

an estimator θ̂n of the unknown parameter θ in Ψ̃n(θ), yielding the estimated best linear

predictor (EBLP):

Ψ̂n = Ψ̃n(θ̂n). (1.2)

An important problem in time series analysis is to accurately estimate the mean squared

prediction error (MSPE) of the EBLP:

M(θ) ≡ E
(

Ψ̂n −Ψn(θ)
)2

. (1.3)

Like the BLP Ψ̃n(θ), the MSPE also depends on the unknown parameter vector θ. Note that

the function M(θ) ≡Mn(θ) can be represented as

M(θ) = E
(

Ψ̃n(θ)−Ψ
)2

+ 2E
[
{Ψ̂n − Ψ̃n(θ)}{Ψ̃n(θ)−Ψ}

]
+ E

(
Ψ̂n − Ψ̃n(θ)

)2

≡M1(θ) +M2(θ) +M3(θ), say. (1.4)
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The first term M1(θ) ≡ M1n(θ) is the MSPE of the ideal predictor Ψ̃n(θ), the third term

M3(θ) ≡ M3n(θ) is the estimation error due to the substitution of θ̂n in place of θ in Ψ̃n(·),
and the second one is a cross-product term. Thus, the MSPE of the EBLP depends on the

MSPE of the ideal predictor as well as on the particular estimator θ̂n used for estimating

the unknown parameter vector θ. Except for some very specific cases, analytic expressions

for the functions Mi(θ), i = 1, 2, 3 (particularly, M2(θ) and M3(θ)) are not available in

the literature, making the estimation of the MPSE M(θ) difficult by the traditional plug-in

approach. In this paper, we propose a bootstrap based method to derive an estimator of

the MPSE M(θ). The key advantage of the bootstrap methodology is that it produces an

estimator of the MSPE of the EBLP for any given estimator θ̂n of θ, without requiring any

analytical computation of the functions M2(θ) and M3(θ) which critically depend on the

choice of θ̂n. We show that under fairly mild regularity conditions on the {Xt}-process and

on the estimators θ̂n, the bootstrap MSPE estimator is consistent.

Next we consider higher order accuracy of the resulting bootstrap estimator. Typically, of

the three terms Mi(θ), i = 1, 2, 3, the first one is O(1), while the second and the third terms

are typically O(n−1), as the sample size n goes to infinity. As a result, usual consistency

of the “ordinary” bootstrap MSPE estimator of M(θ) is not adequate in many applications

where the sample size only moderately large and the effects of the O(n−1) terms can not

be ignored. Indeed, it can be shown that the bootstrap MSPE estimator has a bias of the

order O(n−1), which is of the same order as the orders of the terms Mi(θ), i = 2, 3. Thus,

the “ordinary” bootstrap MSPE estimator masks the contributions coming from parameter

estimation in Ψ̃n(θ) to the overall MSPE of Ψ̂n. What is needed is an estimator of the MSPE

of Ψ̂n that has a bias of order o(n−1) and still retains the standard order of convergence;

Following Prasad and Rao (1990), we call such estimators of the MSPE M(θ) second order

correct. A common way to construct a second order correct MSPE estimator is to use the

explicit bias correction to a plug-in estimator of M(θ). However, this is impractical and

undesirable in our situation mainly because of two reasons, namely, (i) explicit analytical

expressions for Mi(θ), i = 1, 2, 3 are very rarely available in the literature (only in some

simple toy models) as these are very difficult to derive in reasonable generality, and (ii) the

explicit bias correction leads to a negative estimator of the MSPE with a positive probability.

An important contribution of the paper is to develop a new method for constructing a second

order correct MSPE estimator that is non negative with probability one. The key idea is to

“tilt” the estimator θ̂n suitably so that it balances out the bias of the “ordinary” bootstrap

MSPE estimator to the order O(n−1). The tilting factor used here is based on certain
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iterations of the bootstrap step and on a simple formula to combine them. As a result, the

computation of the proposed second order correct MSPE estimator is very much feasible

with today’s computing power, and the methodology works any choice of the estimator θ̂n

satisfying the mild regularity conditions of the main result. Most importantly, the proposed

method does not require any analytical derivation on the part of the user.

The rest of the paper is organized as follows. We conclude this section with a brief litera-

ture review. In Section 2, we describe the “ordinary” bootstrap estimator of the MSPE and

prove its consistency. The tilted version of the MSPE estimator and its theoretical proper-

ties are stated in Section 3. In Section 4, we develop some bootstrap based approximations

for different functions appearing in the tilted MSPE estimator, for which exact analytical

expressions are either unavailable or intractable. In Section 5, we report the results from a

simulation study on finite sample properties of the proposed tilted MSPE estimator. Proofs

of the main results are presented in Section 6.

The literature on time series prediction is huge and is well documented in the case

where the target variable Ψ = Xn+k for some k; See Brockwell and Davis (1991), Priestley

(1981). For standard stationary time series models, like the autoregressive (AR) processes

and autoregressive and moving average (ARMA) processes, explicit expressions for M1(θ)

is known (cf. Brockwell and Davis (1991)), although expressions for M2(θ) and M3(θ) are

not common. The masking-effect of the naive plug-in approach on MSPE estimation was

pointed out by Prasad and Rao (1990), who also introduced the concept of second order

bias corrected MSPE estimators, in the context of small area estimation. For a detailed

account of the literature on issues and solutions in the small area estimation problem until

2003, see Rao (2003). In the time series context, Ansley and Kohn (1986) and Quenneville

and Singh (2000) proposed different MSPE estimators based on analytical considerations for

the state space model. More recently, Pfeffermann and Tiller (2005) proposed a bootstrap

based method for MSPE estimation of the best linear unbiased predictor (BLUP), also for the

state-space model under a Gaussian assumption. The second order correct MSPE estimation

methodology presented here is different from the earlier work on the problem in the time

series literature; It is based on the approach developed by Lahiri and Maiti (2003) and Lahiri

et al. (2007) in the context of small area estimation.
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2 Bootstrap Estimation of the MSPE

2.1 Preliminaries

In this section, we formalize the basic framework for bootstrap estimation of the MSPE.

As in Section 1, let {Xt}∞t=−∞ be a second order stationary time series with an absolutely

summable auto-covariance function γ(·) and spectral density f(·), and for a known function

ψ : IRk → IR let

Ψ = ψ(Xn+1, . . . , Xn+k)

is to be predicted using the observations X1, . . . , Xn. For the ease of exposition and as it is

customary in the time series literature (cf. Chapter 5, Brockwell and Davis (1991)), for the

rest of this paper, we shall suppose that the variables Xt’s and Ψ have mean zero. Thus,

the focus of the paper is on the prediction of the random part; The deterministic mean

part, if any, can be estimated by any of the standard methods, such as (quasi-)maximum

likelihood, method of moments, etc., which in turn, can be used for mean correction. Under

the zero-mean assumption, it is easy to derive an explicit expression for the BLP Ψ̃n using

standard arguments. Thus, by differentiating the expression on the right side of (1.1), it is

easy to show that the vector λn ≡ (λ1, . . . , λn)′ of co-efficients in Ψ̃n are given by

λn ≡ λn(θ) = Γ−1
n γn, (2.1)

where Γn ≡ Γn(θ) is the n × n matrix with (i, j)th element Cov(Xi, Xj), 1 ≤ i, j ≤ n, and

where γn ≡ γn(θ) = (Cov(Ψ, X1), . . . ,Cov(Ψ, Xn))′. Here and in the following, we drop θ

from population quantities, except when it is important to highlight the dependence on θ

and similarly, often drop n from subscript, for simplicity of exposition. Note that by the

Pythagorus theorem, the MSPE of the ideal predictor Ψ̃n is given by

M1n(θ) = Var(Ψ)− γ ′nΓ−1
n γn.

However, exact expressions for the second and the third terms in (1.4) are not easy to write

down and both of these terms depend on the particular estimator θ̂n is used. In the next

section, we describe a resampling method for estimating all three components of the MSPE

of the EBLP Ψ̂n.

2.2 Ordinary Bootstrap estimator of the MSPE

Let θ̃n be an estimator of θ based on X1, . . . , Xn. We shall use θ̃n to produce the bootstrap

estimator of the MSPE M(θ). In principle, one may take θ̃n = θ̂n, but a different choice
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of θ̂n may be more appropriate in a specific application. The main steps in the ordinary

bootstrap estimation procedure are as follows:

I. Generate a bootstrap sample X∗1 , . . . , X
∗
n under the θ = θ̃n. Let θ∗n denote the bootstrap

version of θ̂n obtained by replacing X1, . . . , Xn by X∗1 , . . . , X
∗
n.

II. Compute Ψ̂∗n = Ψ̃n(θ∗n) by replacing θ in λ(θ) (cf. (2.1)) by θ∗n.

III. The bootstrap estimator of M(θ) is given by

m̂spe
or
n = E∗

(
Ψ̂∗n −Ψ∗n

)2

, (2.2)

where Ψ∗n = ψ(X∗1 , . . . , X
∗
n) is the bootstrap version of the predictand Ψ and where E∗

denotes conditional expectation given X1, . . . , Xn.

In practice, evaluation of the conditional expectation is done by the Monte-Carlo method.

For this, steps (I)-(III) are repeated a large number (say, B) of times and the resulting

bootstrap replicates are combined. Specifically, for each b = 1, . . . , B, one generates the bth

resample X∗b1 , . . . , X
∗b
n under the θ = θ̃n (independently of the other replicates) and then

computes θ∗bn , Ψ̂∗bn = Ψ̃n(θ∗bn ) and Ψ∗bn = ψ(X∗b1 , . . . , X
∗b
n ) based on X∗b1 , . . . , X

∗b
n as in steps

(I)-(III). The Monte-Carlo approximation to m̂spe
or
n is given by

m̂spe
or:mc
n = B−1

B∑
b=1

(
Ψ̂∗bn −Ψ∗bn

)2

. (2.3)

The following result shows that the ordinary bootstrap estimator of the MSPE is con-

sistent under mild conditions on the underlying time series {Xt}∞t=−∞ and on the estimator

sequences {θ̂n}n≥1 and {θ̃n}n≥1.

Theorem 2.1: Let θ0 denote the true value of the parameter θ and let Θ0 = {θ ∈ Θ :

‖θ − θ0‖ ≤ δ0} for some δ0 ∈ (0,∞). Suppose that θ̃n − θ0 = op(1) as n → ∞ and that the

following conditions hold:

(A.1) There exists δ ∈ (0, 1] such that

(i) sup{EθΨ2 : θ ∈ Θ0} < δ−1, and

(ii) δ < fθ(ω) ≤ δ−1 for all ω ∈ (−π, π) and θ ∈ Θ0.

(A.2) (i) For each j ≤ 0, gj(θ) is continuous at θ = θ0 and |gj(θ)| ≤ aj for all θ ∈ Θ0, where∑0
j=−∞ aj <∞.

(ii) fθ(·) is continuous at θ = θ0 in the ‖ · ‖∞-norm.
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(A.3) sup{M3n(θ) : θ ∈ Θ0} → 0 as n→∞.

Then

m̂spe
or
n −Mn(θ0)→p 0 as n→∞. (2.4)

Conditions (A.1)-(A.3) are local uniformity conditions on various second order population

quantities (moments) related to the time series {Xi}∞i=−∞, and essentially requires continuity

of the parametric model at θ = θ0. Condition (A.1)(i) requires that the second moment of the

predictand Ψ be bounded in a neighborhood of the true parameter value θ0, which would hold

if Eθ0Ψ
2 <∞ and EθΨ

2, as a function of θ, is continuous at θ = θ0. Condition (A.1)(ii) is a

crucial condition that is used all through the paper. It is used to obtain some bounds on the

spectral norm of the matrix Γn(θ) and its inverse. This condition is satisfied when {Xi}∞i=−∞
is an ARMA(p, q)-process where all roots of the corresponding characteristic polynomial lie

outside the unit circle (cf. Brockwell and Davis (1991)). Next consider (A.2). Continuity of

gj(·) at θ = θ0 is tied down to the continuity of the model parametrization at θ = θ0. The

local uniform summability of gj(θ)’s can be replaced by requiring finiteness and continuity

of the absolute sum
∑

j≤0 |gj(θ)| on Θ0, in which case aj corresponds to |gj(θ1)| for all j ≤ 0,

for a common θ1 ∈ Θ0. Alternatively, it is guaranteed if some standard mixing and moment

conditions hold. More specifically, suppose that the process {Xi}∞i=−∞ is strongly mixing

with the mixing co-efficient

α(n; θ) ≡ sup{|Pθ(A ∩B)− Pθ(A)Pθ(B)| : A ∈ F j−∞,F−∞j+n , j ∈ ZZ}, (2.5)

where F ba = σ〈Xt : t ∈ [a, b] ∩ ZZ〉, −∞ ≤ a ≤ b ≤ ∞. Let α0(n) = supθ∈Θ0
α(n; θ),

n ≥ 1. If E|Ψ|2+δ < ∞ and
∑∞

n=1 α0(n)
δ

2+δ < ∞, then (A.2)(i) holds. Condition (A.2)(ii)

requires a form of continuity of the parametric model at θ = θ0, and is satisfied in many

examples, including the class of ARMA (p, q)-models mentioned above. It can be further

ascertained if the function EθX0Xj is continuous at θ = θ0 for each j ≥ 0, and for some δ > 0,

E|X1|2+δ <∞ and
∑∞

n=1 α0(n)
δ

2+δ <∞. Finally, consider (A.3). As pointed out before, the

function M3n(θ) quantifies the effect of replacing the unknown true value of the parameter

by the estimator θ̂n in the (ideal) BLP, and hence, it critically depends on the properties of

the estimator sequence {θ̂n}n≥1. Typically, for a sequence of consistent estimators {θ̂n}n≥1,

M3n(θ0)→ 0. Condition (A.3) requires the convergence to be uniform in a neighborhood of

θ0. We impose the condition directly on M3n(·) to keep the statement of Theorem 2.1 simple,

which only claims consistency of the ordinary bootstrap estimator of the MSPE. A set of

sufficient conditions for (A.3) is given in Section 3, where a more precise bound (namely,

O(n−1)) on the order of M3n(·) is obtained.
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2.3 Limitations of the ordinary bootstrap estimator

It is easy to see that the ordinary bootstrap estimator of the true MSPE Mn(θ0) is equivalent

to the plug-in estimator Mn(θ̃n), and has the added advantage that it does not require an

explicit expression for the three components Min(θ0), i = 1, 2, 3 (cf. (1.4)). However, as

explained earlier, of the three terms in (1.4), only the leading term M1n(θ0) = O(1) while

the terms Min(θ0), i = 2, 3 are typically of the order O(n−1). Therefore, Theorem 2.1 asserts

consistency of bootstrap estimator m̂spe
or
n for M1n(θ0), the MSPE of the ideal predictor Ψ̃n,

only and fails to capture the effects of estimating the unknown θ0 by θ̂n, leading to the terms

Min(θ0), i = 2, 3 in the overall MSPE Mn(θ0) of the EBLP Ψ̂n. For a better approximation,

effects of the terms Min(θ0), i = 2, 3 must be taken into account. In the next section, we

describe an implicit bias-correction method based on the bootstrap that achieves this goal.

3 Second order accurate estimation of the MSPE

3.1 The tilting method

We first describe the tilting method in our MSPE estimation problem. The basic idea behind

the tilting method is to replace the original estimator θ̂n with a suitably tilted (or perturbed)

estimator of θ that annihilates the bias contribution of θ̂n to M1n(·), upto the second order

accuracy. Suppose that
p∑
j=1

|M (j)
1n (θ0)| > ε0, (3.1)

for some ε0 > 0, where for a smooth function f : IRp → IR, f (i), f (i,j) and f (i,j,k) denote the

first, the second and the third order partial derivatives with respect to the i-th co-ordinate,

the (i, j)-th co-ordinates, and the (i, j, k)-th co-ordinates, respectively, i, j, k = 1, · · · , p.
Condition (3.1) says that M

(i)
1n (θ0) 6= 0 for some i. For notational simplicity, we suppose

that M
(1)
1n (θ0) 6= 0. Next let βn ≡ βn(θ) and Σn = Σn(θ) respectively denote the the bias

and variance of θ̂n. We shall also suppose that some consistent estimators β̂n and Σ̂n of βn

and Σn, respectively, are available. For example, under mild conditions on θ̂n and {Xt},
such estimators can be generated using the bootstrap method (cf. Lahiri (2003)). Then the

preliminary tilted estimator of θ is defined as θ̂n + rn, where rn is given by,

rn = −

[
p∑
i=1

M
(i)
1n (θ̂n)β̂n,i +

1

2

p∑
i=1

p∑
j=1

M
(i,j)
1n (θ̂n)Σ̂n(i, j)

]{
M

(1)
1n (θ̂n)

}−1

e1, (3.2)
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where, β̂n,i and Σ̂n(i, j) denote the ith component of β̂n and (i, j)th component of Σ̂n,

respectively, and where the vector e` ∈ IRp has one in the `th position and zeros elsewhere,

1 ≤ ` ≤ p. Thus, the preliminary tilted estimator is obtained from the initial estimator θ̂n by

adding a correction factor to the first component of θ̂n only. Note that if, instead of M
(1)
1n (·), a

different partial derivative M
(i)
1n (·) were nonzero, then we would define the preliminary tilted

estimator by replacing the factor
{
M

(1)
1n (θ̂n)

}−1

e1 in (3.2) with
{
M

(i)
1n (θ̂n)

}−1

ei.

To make the MSPE estimator well-defined and to ensure its consistency, we need to

modify the preliminary tilted estimator θ̂n + rn. The modifications are needed either if

θ̂n + rn falls outside Θ, in which case Mn(θ̂n + rn) is not well defined, or if M
(1)
1i (θ̂n) becomes

too small, in which case, it scales up the variability of the correction factor rn. Under

appropriate regularity conditions, the probability of getting a preliminary estimator θ̂n + rn

outside Θ or that of getting a value of M
(1)
1n (θ̂n) below the threshold (1 + log n)−2 tends to

zero rapidly as n → ∞. As a consequence, the perturbed estimator θ̌n coincides with the

preliminary perturbed estimator θ̂n + rn with high probability.

The tilted estimator of the MSPE is now defined as

m̂spen = Mn(θ̌n) (3.3)

where θ̌n is the tilted estimator of θ, defined by

θ̌n =

{
θ̂n + rn if θ̂n + rn ∈ Θ and |M (1)

1n (θ̂n)|−1 ≤ (1 + log n)2

θ̂n otherwise.
(3.4)

Although an explicit expression for the function Mn(·) is typically unknown, it is not difficult

to see that the tilted estimator m̂spen is equivalently given by (2.2) with θ̃n = θ̌n; The latter

can be computed using the algorithm given in Section 2.2.

In the next section, we state the regularity conditions and show that the tilted estimator

of the MSPE in (3.3) achieves second order bias accuracy.

3.2 Theoretical properties

As before, let θ0 denote the true value of the parameter θ and let Θ0 = {θ ∈ Θ : ‖θ−θ0‖ ≤ δ0}
denote a open neighborhood of θ0. Let Pθ and Eθ denote the probability and expectation

under θ. For notational simplicity, we set Pθ0 = P and Eθ0 = E. For j ∈ ZZ, define

gj(θ) = Eθ[ψ(X1, . . . , Xk)Xj], θ ∈ Θ.

Note that gj(θ) is the covariance between Xn+j and Ψ = ψ(Xn+1, . . . , Xn+k) under θ, which

decreases to zero as j → −∞ under suitable weak dependence and moment conditions on
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{Xi}∞i=−∞. Let ∆λn(θ) be the p × n matrix, with ith column given by the p × 1 vector of

partial derivatives of the ith component of λn(θ) = γn(θ)Γn(θ)−1. Define

µ2n(θ) ≡ nEθ

(
[θ̂n − θ]′∆λn(θ)Xn{λn(θ)Xn −Ψ}

)
µ3n(θ) ≡ Eθ

(
n1/2[θ̂n − θ]′∆λn(θ)Xn

)2

,

which respectively give approximations to the functions M2n(θ) and M3n(θ), upto an error

of order o(n−1).

Conditions:

(C.1) Suppose that there exists a δ ∈ (0,∞) such that

lim inf
n→∞

M
(1)
1n (θ0) ≥ δ.

(C.2) Suppose that there exists κ, c0 ∈ (0,∞) such that for all θ ∈ Θ:

(i) EθΨ
2 < c0,

(ii) Eθ|X1|4+κ < c0,

(iii) lim supn→∞Eθ

{√
n‖θ̂n − θ‖

}8

< c0.

(C.3) Suppose that gj(θ) and fθ are twice differentiable on Θ, and that there exist a constant

c1 ∈ (0,∞) and a sequence {an}n≥1 ⊂ (0,∞) with
∑∞

n−1 aj < ∞ such that for all

k, l ∈ {1, . . . , p},

(i) max{gj(θ), |g(k)
j (θ)|, |g(k,l)

j (θ)|} < aj for all θ ∈ Θ,

(ii) max{‖fθ‖∞, ‖f−1
θ ‖∞, ‖f

(k)
θ ‖∞, ‖f

(k,l)
θ ‖∞} < c1 for all |a| ≤ 2 and for all θ ∈ Θ,

and

(iii) ‖f (k,l)
θ − f (k,l)

θ0
‖ ≤ c1‖θ − θ0‖δ, for all θ ∈ Θ0 for some δ > 0.

(C.4) Suppose that there exists a c2 ∈ (0,∞) such that sup{|µkn(θ)| : θ ∈ Θ} < c2 for all

n ≥ c2, and µkn(·) is equi-continuous at θ = θ0, k = 2, 3.

(C.5) Suppose that βn(θ) = n−1β0(θ) + o(n−1) and Σn(θ) = n−1Σ0 + o(n−1) uniformly in

θ ∈ Θ and ∆0 ≡ sup{‖β0‖+ ‖Σ0(θ)‖ : θ ∈ Θ} <∞.

Condition (C.1) is a specialized version of (3.1) for the given formula for the correction

factor rn, which says that the function M1n(·) has a non-zero derivative along one of the

directions i ∈ {1, . . . , p} at the true value θ0, and is typically satisfied in most applications.
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See the discussion following (3.1) for implications and alternative versions of this. Condi-

tion (C.2)(i) is needed to make M1n(·) well-defined while Conditions (C.2)(ii) and (iii) are

used to establish exact orders of the functions Mkn(·) for k = 2, 3 (cf. Lemma 6.2 below).

Condition (C.3) is a smoothness condition on the spectral density of the process {Xt} and

on the cross-covariances gj(θ) = Covθ(Ψ, Xj), which would hold if the underlying model-

parametrization is suitably smooth. The same comment applies to Condition (C.4), which

requires boundedness and equi-continuity of the approximating functions µkn, k = 2, 3. Fi-

nally, Condition (C.5) is a condition on the bias and the variance of the estimator sequence

{θ̂n}n≥1. We have decided to state Conditions (C.4) and (C.5) in terms of the original se-

quence {θ̂n}n≥1 to allow for generality. For a specific choice of θ̂n, these conditions have to

be checked directly. To indicate the type of arguments one would need to verify (suitable

variants) of these conditions, consider the class of estimator sequences {θ̂n}n≥1 that admit a

representation of the form:

θ̂n − θ =
β0(θ)

n
+ n−1

n∑
i=1

ξi +Rn (3.5)

for some function β0(·) : Θ → IRp, zero mean random vectors ξi ∈ σ〈Xi〉, i ≥ 1 and

a remainder term Rn. Suppose that there exist constants δ, c3 ∈ (0,∞) and a sequence

{dn}n≥1 satisfying dn = o(n−1/2) such that ‖β(θ)‖ < c3, Eθ‖ξi‖8 < c3, Eθ‖d−1
n Rn‖8 < c3 and∑∞

n=1 n
3α(n; θ)

δ
8+δ < c3 for all θ ∈ Θ. Then, it is easy to check that Conditions (C.2)(iii)

and (C.5) hold. Under (3.5), it can be shown that a variant of Condition (C.4) holds where

the factor n1/2(θ̂n − θ) in the functions µkn are replaced by the leading to terms from (3.5).

For example, for k = 3, it can be shown that under (C.3),

sup
{∣∣∣µ3n(θ)− µ̃3n(θ) : θ ∈ Θ

}
= o(1). (3.6)

where

µ̃3n(θ) ≡ Eθ

([
n−1/2

n∑
i=1

ξi

]′
∆λn(θ)Xn

)2

.

As a result, one can use µ̃3n(θ) in place of µ3n(θ) as an approximation to M3n(θ) to establish

Theorem 3.1 (retracing the steps given in Section 6). Note that the equi-continuity of µ̃3n(θ)

at θ = θ0 can now be proved under a continuity condition on the individual lag-covariance

functions Eθ[X1, ξ1][Xk+1, ξk+1]′, k ≥ 0 (as functions of θ) as in Condition (A.2) and the

discussion following the statement of Theorem 2.1. We give a proof of (3.6) in Section

6. A similar treatment is possible also for the term µ2n(θ). Hence, it follows that for an

estimator sequence {θ̂n}n≥1 satisfying (3.5), Conditions (C.2) - (C.5) hold under mild moment
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conditions on the variables Xt’s and ξt’s and under mild weak dependence conditions on the

underlying process.

With this, we are now ready to state the main result of this section.

Theorem 3.1: Suppose that Conditions (C.1) - (C.5) hold. Then

E
(
m̂spen −Mn(θ0)

)
= o(n−1) (3.7)

Var(m̂spen −Mn(θ0)
)

= O(n−1). (3.8)

Theorem 3.1 shows that under suitable regularity conditions, the tilted MSPE estimator

attains second order bias accuracy. Further, the variance of the tilted estimator continues

to be of the same order as the untilted (naive) MSPE estimator, and is guaranteed to be

non-negative. Thus, the tilted MSPE estimator may be preferred over the ordinary MSPE

estimator that fails to capture the effects of parameter estimation in the EBLP on the overall

MSPE. In the next section, we describe some important issues related to the implementation

of the titling method in practice.

4 Practical implementation based on the bootstrap

Note that the tilting method described above involves computing the functions Min(·), i =

1, 2, 3, and its first and second order partial derivatives, for which explicit expressions are

not always available. In this section, we develop bootstrap based approximations to these

quantities, so that the tilted MSPE estimator can be used in practice, without any analytical

derivations. To that end, first we define a bootstrap-based approximation to the function

M1n(·) at a given value θ = θ1 (which may depend on the data). The steps are similar to

those used for generating the Monte-carlo approximation to m̂spe
or
n in (2.3). Specifically,

for b = 1, · · · , B,

(i) generate bootstrap samples (X∗b1 , · · · , X∗bn+k) under θ1,

(ii) compute Ψ̃∗bn and Ψ∗b by replacing X1, . . . , Xn with X∗b1 , · · · , X∗bn+k. The Monte-carlo

approximation to M1n(θ1) is given by

M∗
1n(θ1) = B−1

B∑
b=1

(Ψ̃∗bn −Ψ∗b)2. (4.1)

Next we construct estimates of the partial derivatives of the functionM1n(·) for computing

the correction factor rn. To motivate the construction, first consider a smooth function

12



g : IR→ IR. Then, for any x ∈ IR, using Taylor series expansion,

g(x+ ε)− g(x− ε) = 2εg
′
(x) + o(ε),

as ε → 0, where g
′
(x) denotes the derivative of g(x) at x. Hence we can use the scaled

difference (2ε)−1{g(x+ ε)− g(x− ε)} as an approximation to g
′
(x) for small values of ε > 0.

Relying on this fact, we can now define suitable bootstrap approximations to the first order

partial derivatives of M1n(·) at θ̂n. Let {an}n≥1 be a sequence of positive real numbers

converging to zero. Then, with M∗
1n as in (4.1), we define the bootstrap approximation to

the first order partial derivatives as,

M
∗(j)
1n (θ̂n) = (2an)−1

[
M∗

1n(θ̂n + anej)−M∗
1n(θ̂n − anej)

]
, (4.2)

j = 1, · · · , p. Similarly, we can define the bootstrap approximations to the second order

partial derivatives as:

M
∗(j,j)
1n (θ̂n) = a−2

n

[
M∗

1n(θ̂n + anej) +M∗
1n(θ̂n − anej)− 2M∗

1n(θ̂n)
]
, 1 ≤ j ≤ p,

M
∗(i,j)
1n (θ̂n) = 2a−2

n

[{
M∗

1n(θ̂n + anei,j) +M∗
1n(θ̂n − anei,j)− 2M∗

1n(θ̂n)
}

−a2
n

{
M
∗(i,i)
1n (θ̂n) +M

∗(j,j)
1n (θ̂n)

}]
, 1 ≤ i 6= j ≤ p. (4.3)

where, ei,j = ei + ej.

Then, we have the following result on the accuracy of the bootstrap estimates of the

partial derivatives:

Proposition 4.1 Suppose Conditions (C.2) and (C.3) hold. Then,

E∗

∣∣∣M∗(j)
1n (θ̂n)−M (j)

1n (θ̂n)
∣∣∣2 = O(B−1a−2

n + a2
n) almost surely

for all 1 ≤ j ≤ p and

E∗

∣∣∣M∗(i,j)
1n (θ̂n)−M (i,j)

1n (θ̂n)
∣∣∣2 = O(B−1a−4

n + a2
n) almost surely

for all 1 ≤ i, j ≤ p.

Thus, by choosing an small and then choosing the number of bootstrap replicates B

suitably large, we can generate accurate approximations to the first and second order partial

derivatives of the function M1n(·). Analytical derivations of the partial derivatives, there-

fore, can be completely bypassed by using the bootstrap (and hence, necessary computing

resources).
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Next, we define the bootstrap estimators of the bias and variance of θ̂n by,

β∗n =
1

B

B∑
b=1

θ̂∗bn − θ̂n,

Σ∗n =

{
1

B

B∑
b=1

θ̂∗bn (θ̂∗bn )′

}
−

(
1

B

B∑
b=1

θ̂∗bn

)(
1

B

B∑
b=1

θ̂∗bn

)′
(4.4)

respectively, where θ̂∗bn denote the bth bootstrap replicate of θ̂n, obtained by replacing

X1, . . . , Xn with X∗b1 , · · · , X∗bn and {(X∗b1 , · · · , X∗bn ) : b = 1, . . . , B} are independent boot-

strap replicates under θ = θ̂n.

Proposition 4.2 Suppose Conditions (C.2), (C.3) and (C.5) hold. Then,

E∗

∥∥∥β∗n − βn(θ̂n)
∥∥∥2

= O(B−1n−2) + o(n−2) almost surely

and

E∗

∥∥∥Σ∗n − Σn(θ̂n)
∥∥∥2

= O(B−1n−2) + o(n−2) almost surely

Combining (4.2), (4.3) and (4.4) , we now define the bootstrap based correction factor as

r∗n = −

[
p∑
i=1

M
∗(i)
1n (θ̂n)β∗n,i +

1

2

p∑
i=1

p∑
j=1

{M∗(i,j)
1n (θ̂n)}{Σ∗n(i, j)}

]
e1{

M
∗(1)
1n (θ̂n)

} , (4.5)

where β∗n,i and Σ∗n(i, j) respectively denote the ith component of β∗n and the (i, j)th element

of Σ∗n, 1 ≤ i, j ≤ p. The bootstrap-based bias-corrected MSPE estimate is given by

m̂spe
∗
n = m̂spe

or:mc
n (θ̌∗n) (4.6)

where m̂spe
or:mc
n (θ̌∗n) is defined by (2.3) with θ̃n = θ̌∗n, and θ̌∗n is defined by replacing rn

and M
(1)
1n (θ̂n) in (3.4) by r∗n and M

∗(1)
1n (θ̂n), respectively.

In view of Theorem 3.1 and Propositions 4.1 and 4.2, m̂spe
∗
n gives an accurate approx-

imation to the bias-corrected estimator of the MSPE that can be evaluated without any

analytical work, provided Conditions (C.1)-(C.5) hold. However, finite sample performance

of the MSPE estimator depends on the choice of different factors, such as an, B, etc. In the

next section, we explore these issues further through a simulation study.

5 Simulation study

For the simulation study, we consider one-step-ahead best linear prediction, i.e., we take the

predictand Ψ to be Xn+1. We shall consider the the following time series models.
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Model 1: In the linear autoregressive model of order 2, AR(2),

Xt = φ1Xt−1 + φ2Xt−2 + εt, (5.1)

for t ∈ Z, where {εt} are independent and identically distributed N(0, σ2). Values of φ1, φ2

are chosen to be (0.2, 0.5) and the value of σ2 is 4.

Model 2: In the linear autoregressive moving-average model of order (1,1), ARMA(1,1),

Xt = φ1Xt−1 + εt + ψ1εt−1, (5.2)

for t ∈ Z, where {εt} are independent and identically distributed N(0, σ2). Here we take the

parameter values to be φ1 = 0.2, ψ1 = 0.5 and we take σ2 = 4.

In this simulation study, we will perturb the estimator in the direction of σ2. In implement-

ing the method, we use B = 1000 bootstrap samples to estimate the bias, variances and for

all other approximations. All simulation results are based on N = 500 replications. The sim-

ulations are done for n = 50, 120 and 500. Table 1 reports the empirical measures of bias and

root mean squared error (RMSE) for both bias-corrected and not bias-corrected estimators

m̂spe
∗
n and m̂spe

or:mc
n of MSPE for three different values of n. The bias and mean squared

error (MSE) are estimated empirically by taking the average over the replicates of the bias

and MSE for each dataset. From Table 1 we can see that the bias correction method gives us

significantly better results for different values of n under the models (5.1)and(5.2). However,

it is worth mentioning that due to the bias correction, the RMSE’s of the bias-corrected

estimators are seemed to be slightly higher than the not bias-corrected estimators. This is

expected, as the randomness in the various approximation steps in the construction of the

bias-corrected estimators adds to its total variability. Boxplots for RMSE’s of the two esti-

mators of MSPE over N = 500 simulations under different models are presented in Figure 1.

The boxplots also support the conclusions obtained from Table 1. In these boxplots we can

see that due to the bias correction the RMSE’s of the tilted estimators seem to be higher

than the unperturbed estimators.

6 Proofs

For a l × l matrix A, let ‖A‖ = sup{‖Ax‖ : x ∈ IRl, ‖x‖ = 1} denote the spectral norm,

where 1 ≤ l ≤ ∞ and where ‖ · ‖ denotes the `2 norm on IR2. Let ZZ+ = {0, 1, 2, . . .}. For

a = (a1, . . . , ap)
′ ∈ ZZp

+, let |a| = |a1|+ . . .+ |ap|, a! =
∏p

i=1 ai! and Da = Da1
1 . . . D

ap
p , where

Dj denotes the partial derivative w.r.t. the jth co-ordinate, 1 ≤ j ≤ p. Let C,C(·) denote
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generic constants with values in (0,∞) that depend on their arguments, if any, but not on

n. Unless otherwise specified, limits in order symbols are taken by letting n→∞.

6.1 Auxiliary Lemmas

Lemma 6.1 Suppose that gj(θ) and fθ are twice differentiable on Θ, and that there exists a

constant C0 > 0 such that

(i)
∑

j≤0 |Dagj(θ)|2 < C0 for all θ ∈ Θ,

(ii) ‖fθ‖∞ + ‖f−1
θ ‖∞ + ‖Dafθ‖∞ < C0 for all |a| ≤ 2 and for all θ ∈ Θ, and

(iii) ‖Dafθ −Dafθ0‖ ≤ C0‖θ − θ0‖δ, for all θ ∈ Θ0 for some δ > 0.

Then, there exists a constant C1 ∈ (0,∞) such that |M (j)
1n (θ)|+ |M (i,j)

1n (θ)| < C1 for all θ ∈ Θ

and for all n ≥ C1, where 1 ≤ i, j ≤ p. Further,
∑

1≤i,j≤p |M
(i,j)
1n (θ0)−M (i,j)

1n (θ)| ≤ C1‖θ0−θ‖δ

for all θ ∈ Θ0 and for all n ≥ C1.

Proof: It is easy to check that for θ1, θ2 ∈ Θ,

γn(θ1)′Γn(θ1)−1γn(θ1)− γn(θ2)′Γn(θ2)−1γn(θ2)

=
(
γn(θ1)− γn(θ2)

)′
Γn(θ1)−1γn(θ1) + γn(θ2)Γn(θ1)−1

(
γn(θ1)− γn(θ2)

)
+γn(θ2)′Γn(θ2)−1

[
Γn(θ2)− Γn(θ1)

]
Γn(θ1)−1γn(θ2),

which, in view of conditions (i),(ii) and eqrefP.3, readily implies that

DjM1n(θ) = [Djγn(θ)]′Γn(θ)−1γn(θ) + γn(θ)′Γn(θ)−1[Djγn(θ)]

−γn(θ)′Γn(θ)−1[DjΓn(θ)]Γn(θ)−1γn(θ).

Next using similar arguments for the second derivation (which is now given by nine terms),

one can complete the proof of the lemma. We omit the details.

Lemma 6.2: Suppose that there exists κ,C ∈ (0,∞) such that

(i) Eθ|X1|4+κ < C,

(ii) lim supn→∞Eθ‖θ̂n − θ‖8 < C

(iii) lim supn→∞ ‖γn(θ)‖ < C, and
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(iv) ‖f−1
θ ‖∞ < C

for all θ ∈ Θ. Then, supθ∈Θ

[∣∣∣M3n(θ)− n−1µ3n(θ)
∣∣∣+
∣∣∣M2n(θ)− n−1µ2n(θ)

∣∣∣] = o(n−1).

Proof: Note that on the set An ≡ {‖θ − θ̂n‖ ≤ ε},

[λn(θ̂n)− λ(θ)]Xn

= [θ̂n − θ]′[∆λn(θ)]Xn +
∑
|a|=2

[θ̂n − θ]aDaλ(θ1)Xn/a!

where θ1 is a point in An. Hence,∣∣∣M3n(θ)− Eθ
(

[θ̂n − θ]′∆λn(θ)Xn

)2∣∣∣
≤ C(p) sup{|Daλ(t)||‖t− θ‖ ≤ ε, |a| = 2}Ėθ‖θ̂n − θ‖4‖Xn‖211(An)

+Eθ

(
[|λn(θ̂n)Xn|+ |λn(θ)Xn|] · 11(‖θ̂n − θ‖ ≥ δ)

)2

≡ I1 + I2 + I3, say.

First consider I2. Let Xn,i = (X1,i, . . . , Xn,i)
′, i = 1, 2 where Xj,1 = Xj11(|Xj| ≤ cn) and

Xj,2 = Xj −Xj,1, 1 ≤ j ≤ n, where cn = n1/2−κ/16. By (iii) and (iv), there exists c0 ∈ (0,∞)

such that ‖λn(θ)‖2 = γn(θ)′Γ(θ)−2γn(θ) < c2
0 for all θ ∈ Θ, for n large. Hence, we have, for

any ε > 0,

Eθ

(
[λn(θ̂n)Xn] · 11(‖θ̂n − θ‖ ≥ ε)

)2

≤ 2Eθ

(
[λn(θ̂n)′Xn,1] · 11(Acn)

)2

+ 2Eθ

(
λn(θ̂n)′Xn,2

)2

≤ 2c2
0

[∣∣∣Eθ( n∑
i=1

[X2
i,1 − EθX2

1,1]11(Acn)
)∣∣∣+ nEθX

2
1,1Pθ(A

c
n)
]

+ 2c2
0Eθ‖Xn,2‖2

≤ Cc2
0

[(
n

∞∑
i=1

|Cov(X2
1,1, X

2
i,1)|
)1/2(

Pθ(A
c
n)
)1/2

+ nEθX
2
1Pθ(A

c
n)

+EθX
2
1 11(|X1| > cn)

]
≤ Cc2

0n
−1−ε

for some ε = ε(κ) > 0.
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By similar arguments, I3 ≤ Cc2
0n
−1−ε. Also,

I1 ≤ CEθ‖θ̂n − θ‖4‖bfXn‖211(An)

≤ Eθ

(
‖θ̂n − θ‖4

[ n∑
i=1

(X2
i,1 − EθX2

i,1) + nEθX
2
1,1 +

n∑
i=1

(X2
2,1

]
11(An)

)
≤ CEθ

(
‖θ̂n − θ‖811(An)

)1/2(
n
∞∑
i=1

|Cov(X2
1,1, X

2
i,1)|
)1/2

+CnEθX
2
1Eθ‖θ̂n − θ‖411(An) + Cn(EθX

4
2,1)1/2(Eθ‖θ̂n − θ‖811(An))1/2

≤ Cc2
0n
−1−ε

for some ε = ε(κ) > 0.

The proof of the second relation follows by repeating the same arguments, and therefore,

it is omitted.

Lemma 6.3: For j ≥ 1 and 1 ≤ k ≤ 4, let ξkj be a σ〈Xj〉-measurable zero-mean random

variable such that for some δ, c1 ∈ (0,∞), Eθ|ξkj|4+δ < c1 for all j, k and
∑∞

n=1 n
3α(n; θ)

δ
4+δ <

c1 for all θ ∈ Θ. Let {ekjn : 1 ≤ j ≤ n}n≥1 ⊂ IR be such that
∑n

j=1 e
2
kjn = O(1) for 1 ≤ k ≤ 4.

Then there exists a constant C1 (depending on c1, but not on θ) such that

lim sup
n→∞

{∣∣∣Eθ[( n∑
i=1

ξ1i

) 3∏
k=2

( n∑
i=1

ekjnξki

)]∣∣∣+ Eθ

[ 4∏
k=1

( n∑
i=1

ekjnξki

)]}
< C1

for all θ ∈ Θ.

Proof: We shall give a proof of the bound on the second term only; the proof of the bound

on the first term is similar (and somewhat simpler). Clearly, for any 1 ≤ k, l ≤ 4,

Eθ

( n∑
i=1

ekinξki

)( n∑
j=1

eljnξlj

)
n−1∑
|m|=0

∑
{(i,j): i−j=m,1≤i,j≤n}

ekineljnEθξkiξlj

≤
n−1∑
|m|=0

∑
{(i,j): i−j=m,1≤i,j≤n}

|ekineljn|
(
Eθ|ξki|2+δ

) 1
2+δ
(
Eθ|ξlj|2+δ

) 1
2+δ
α(|m|; θ)

δ
2+δ

≤
n−1∑
|m|=0

[ n∑
i=1

e2
kin

]1/2[ n∑
i=1

e2
lin

]1/2

C(c1, δ)α(|m|; θ)
δ

2+δ

≤ C(c1, δ)
n−1∑
m=0

α(m; θ)
δ

2+δ .
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Let K4(V1, V2, V3, V4) denote the fourth order (mixed) cumulant of a set of random variables

V1, V2, V3, V4 under θ, defined by

K4(V1, V2, V3, V4; θ) =
∂

∂v1

∂

∂v2

∂

∂v3

∂

∂v4

Eθ exp(
√
−1[v1V1 + v2V2 + v3V3 + v4V4])

∣∣∣
v1=...=v4=0

.

Then, by using multi-linearity of K4(·), it follows that

Eθ

[ 4∏
k=1

( n∑
i=1

ekjnξki

)]
≤
∣∣∣K4(

n∑
i=1

e1jnξ1i, . . . ,

n∑
i=1

e4jnξ4i)
∣∣∣+

∑
I⊂{1,2,3,4},|I|=2

∣∣∣K2(
n∑
i=1

ekjnξki, k ∈ I)(
n∑
i=1

ekjnξki, k ∈ Ic)
∣∣∣.

Note that

|K2(
n∑
i=1

ekjnξ1i, k ∈ I)|

≤
∏
k∈I

[
Var
( n∑
i=1

ekinξki

)]1/2

≤
∏
k∈I

[ n∑
i=1

e2
kinEθ(ξki)

2 + 2
n−1∑
j=1

( n−j∑
i=1

e2
kin

)1/2( n∑
i=j+1

e2
kin

)1/2

|Cov(ξki, ξk(i+j))|
]1/2

= O(1) uniformly in θ ∈ Θ.

Next writing ěin = max{|ekin| : k = 1, 2, 3, 4}, 1 ≤ i ≤ n, and writing
∑

b for the sum over
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all i1, . . . , i4 ∈ {1, . . . , n} with maximal gap b, 0 ≤ b ≤ n− 1, we have∣∣∣K4(
n∑
i=1

e1jnξ1i, . . . ,

n∑
i=1

e4jnξ4i)
∣∣∣

≤ C

n−1∑
b=0

∑
b

4∏
k=1

|ekikn||K4(ξ1i1 , . . . , ξ4i4)|

≤ C

n−1∑
b=0

∑
b

4∏
k=1

|ekikn|c
4

4+δ

1 α(b; θ)
δ

4+δ

≤ C(c1, δ)
n−1∑
b=0

[ n∑
i=1

ěin

{ ∑
|ik−i|≤b,k=1,2,3

3∏
k=1

ěikn

}]
α(b; θ)

δ
4+δ

≤ C(c1, δ)
n−1∑
b=0

[ n∑
i=1

ěin

3∏
k=1

b1/2
( ∑
|ik−i|≤b

ě2
ikn

)1/2]
α(b; θ)

δ
4+δ

≤ C(c1, δ)
n−1∑
b=0

b3/2
[{ n∑

i=1

ě2
in

}1/2{ n∑
i=1

3∏
k=1

( ∑
|ik−i|≤b

ě2
ikn

)}1/2]
α(b; θ)

δ
4+δ

≤ C(c1, δ)
n−1∑
b=0

b3/2
[{ n∑

i=1

ě2
in

}1/2{(
b

n∑
i=1

ěin

)(
bmax{ě2

in : 1 ≤ i ≤ n}
)2

}
]
α(b; θ)

δ
4+δ

≤ C(c1, δ)
[ n−1∑
b=0

b3α(b; θ)
δ

4+δ

]
×
[ ∞∑
n=1

n3α(n; θ)
δ

4+δ

]
×
[

max{ě2
in : 1 ≤ i ≤ n}

)2

}
]

= O(1) uniformly in θ ∈ Θ.

6.2 Proofs of the main results:

Proof of Theorem 2.1: It is enough to show that,

|M1n(θ̃n)−M1n(θ0)|+
3∑
i=2

(
|Min(θ̃n)|+ |Min(θ0)|

)
= op(1). (6.3)

Note that by (C.2) and the condition θ̃n
p→ θ0, |M1n(θ̃n)−M1n(θ0)| = op(1) if,

γn(θ̃n)
′
Γ−1
n (θ̃n)γn(θ̃n)− γ(θ0)

′
Γ−1
n (θ0)γn(θ0) = op(1). (6.4)

It is easy to check that the absolute value of the right side of (6.3) is bounded above by

|γn(θ̃n)
′
(Γ−1

n (θ̃n)− Γ−1
n (θ0))γn(θ̃n)|

+2‖γn(θ̃n)− γn(θ0)‖‖Γ−1
n (θ0)‖

(
‖γn(θ̃n)‖+ ‖γn(θ0)‖

)
≡ I1n + I2n, say. (6.5)
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By using the standard isometric isomorphism between `2(ZZ) and L2(0, 2π) through the

Fourier-Plancherel transform (cf. Bhatia (2003), Rudin (1987)), we have,

‖Γ−1
n (θ)‖ ≤ C‖f−1

θ ‖∞
‖Γn(θ1)− Γn(θ2)‖ ≤ C‖fθ1 − fθ2‖∞, for all θ1, θ1 ∈ Θ, n ≥ 1. (6.6)

By (6.6) and conditions (C.2) and (C.3),

I1n = |γn(θ̃n)
′
Γ−1
n (θ0)(Γn(θ̃n)− Γn(θ0))Γ−1

n (θ̃n)γn(θ̃n)|

≤ ‖γn(θ̃n)‖2‖Γ−1
n (θ0)‖‖Γn(θ̃n)‖‖Γn(θ̃n)− Γn(θ0)‖

= op(1).

By similar arguments, on the set {‖θ̃n − θ0‖ < ε}, (0 < ε < δ),

I2
2n ≤ C‖γn(θ̃n)− γn(θ0)‖2

= C

[
M−1∑
j=0

|gj(θ̃n)− gj(θ0)|2 +
n−1∑
j=M

|gj(θ̃n)− gj(θ0)|2
]

≤ C

[
M−1∑
j=0

sup
‖x‖≤ε

|gj(θ0 + x)− gj(θ0)|+
∞∑
j=M

sup
θ∈Θ0

|gj(θ)|

]

Given any η > 0, there exist M ≥ 2, such that,
∑∞

j=M supθ∈Θ0
|gj(θ)| < η

[3C]
. Next, given

M ≥ 1 and η > 0, there exists ε ∈ (0, δ) such that

sup
‖x‖≤ε

|gj(θ0 + x)− gj(θ0)| < η

3MC
, for all j = 0, . . . ,M.

Hence,

P (I2
2n > η) ≤ P (‖θ̃n − θ0‖ > ε) + P (I2

2n > η, ‖θ̃n − θ0‖ < δ)

≤ P (‖θ̃n − θ0‖ > ε) + 0 for large n

= o(1).

By similar arguments,

P (M3n(θ̃n) > ε) ≤ P (sup{M3n(θ) : θ ∈ Θ0} > ε, θ̃n ∈ Θ0 + P (θ̃n 6∈ Θ0)

= o(1).

Since M2n(θ) ≤ 2
[
M1n(θ)M3n(θ)

]1/2

for all θ, the theorem is proved.
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Proof of (3.6): Note that by Lemma 6.3, sup{|µ̃3n(θ)| : θ ∈ Θ} = O(1). Hence, noting

that sup{(Eθ‖Rn‖8)1/8 : θ ∈ Θ} = O(dn) = o(n−1/2), it is enough to show that

sup

{∣∣∣∣µ̃3n(θ)− Eθ
([
n−1/2β0(θ) + n−1/2

n∑
i=1

ξi

]′
∆λn(θ)Xn

)2∣∣∣∣ : θ ∈ Θ

}
= o(1). (6.7)

Now expanding the second term and applying the first part of Lemma 6.3, one can conclude

that the left side of (6.7) is in fact O(n−1). This completes the proof of (3.6).

Proof of Theorem 3.1: By (C.1), there exists C ∈ (0,∞) such that sup{|M (1)
1n (θ)|−1 : θ ∈

Θ0, j, l = 1, · · · , p;n ≥ 1} < C. Let

D̂n =

p∑
j=1

M
(j)
1n (θ̂n)β̂n,j +

p∑
j=1

p∑
l=1

w(j, l)M
(j,l)
1i (θ̂n)Σ̂n(j, l)

D̃n =

p∑
j=1

M
(j)
1i (θ0)β̂n,j +

p∑
j=1

p∑
l=1

w(j, l)M
(j,l)
1i (θ0)Σ̂n(j, l),

n ≥ 1, where w(j, l) = 1/2 for j 6= l and w(j, l) = 1 for j = l. Then by Taylor’s expansion,

it follows that there exists a constant C ∈ (0,∞) such that on the set {θ̂ ∈ Θ0},

D̂n = D̃n +R1n, and rn = − D̃n

M
(1)
1n (θ0)

e1 +R2ne1 (6.8)

where |R1n| ≤ C
{
‖β̂n‖.‖θ̂n− θ0‖+‖θ̂n− θ0‖γ‖Σ̂n‖

}
and |R2n| ≤ C

{
|D̂n|.‖θ̂n− θ0‖+ |R1n|

}
.

Let A1n ≡ {θ̂n ∈ Θ0} ∩ {θ̂n + rn ∈ Θ}. Using similar arguments, on the set A1n, for all

u ∈ [0, 1], we have

p∑
j=1

p∑
l=1

w(j, l)M
(jl)
1n (θ̂n + urn)

(
[θ̂n + rn]− θ0

)ej+el
=

p∑
j=1

p∑
l=1

w(j, l)M
(jl)
1n (θ0)

(
θ̂n − θ0

)ej+el
+R3n(u)

where supu∈[0,1] |R3n(u)| ≤ C
[
‖(θ̂n + rn)− θ0‖2+γ + ‖ (θ̂n + rn)− θ0‖ · ‖θ̂n − θ0‖+ ‖rn‖2

]
for some C ∈ (0,∞).

Next define the set A2n = A1n ∩ {θ̂n + rn ∈ Θ0}. Then, on A2n = {θ̂n, θ̂n + rn ∈ Θ0}, by
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Taylor’s expansion, there exists a point θ†n on the line joining θ̂n + rn and θ0 such that

M1i(θ̂n + rn)−M1i(θ0)

=

p∑
j=1

M
(j)
1n (θ0)

{
[θ̂n + rn]− θ0

}ej
+

p∑
j=1

p∑
l=1

w(j, l)M
(jl)
1i (θ†n)

{
[θ̂n + rn]− θ0

}ej+el
=

p∑
j=1

M
(j)
1n (θ0)

(
θ̂n − θ0

)ej
+M

(1)
1n (θ0)

(
− D̃n

M
(1)
1n (θ0)

+R2n

)

+

p∑
j=1

p∑
l=1

w(j, l)M
(jl)
1n (θ0)

{
θ̂n − θ0

}ej+el
+R†3n

=

p∑
j=1

M
(j)
1n (θ0)

{(
θ̂n − θ0

)ej
− β̂n,j

}

+

p∑
j=1

p∑
l=1

w(j, l)M
(j,l)
1i (θ0)

{(
θ̂n − θ0

)ej+el
− Σ̂n(j, l)

}
+M

(1)
1n (θ0)R2n +R†3n

≡ Q1n +M
(1)
1n (θ0)R2n +R†3n, say (6.9)

where R†3n = R3n(u) with the u corresponding to θ†n.

Hence, on the set A3n ≡ {|M (1)
1n (θ̂n)|−1 ≤ (1 + log n)2},

M1n(θ̌n)−M1n(θ0)

= [M1n(θ̂n + rn)−M1n(θ0)]11
({

θ̂n + rn ∈ Θ
}
∩ A3n

)
+[M1n(θ̂n)−M1n(θ0)]11

({
θ̂n + rn /∈ Θ

}
∪ Ac3n

)
= [M1n(θ̂n + rn)−M1n(θ0)]

{
11(A2n) + 11(θ̂n + rn ∈ Θ)− 11(A2n)

}
11(A3n)

+[M1n(θ̂n)−M1n(θ0)]11
({

θ̂n + rn /∈ Θ
}
∪ Ac3n

)
≡
[
Q1n +M

(1)
1n (θ0)R2n +R†3n

]
11(A2n ∩ A3n) +R4n, say

≡ Q1i +R5n, say, (6.10)

where |R5n| ≤ |R4n|+ |R2n +R†3n|11(A2n) + |Q1n|11(Ac2n ∩ Ac3n) and

|R4n| ≤
∣∣∣M1n(θ̂n + rn)−M(θ0)

∣∣∣ · ∣∣∣11(θ̂n + rn ∈ Θ)− 11(A2n)
∣∣∣11(A3n)

+
∣∣∣M1n(θ̂n −M1n(θ0)

∣∣∣11({θ̂n + rn /∈ Θ0} ∪ Ac3n)

≡ R41n, say.
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Note that by definition,∣∣∣11(θ̂n + rn ∈ Θ)− 11(A2n)
∣∣∣

≤ 11(θ̂n + rn ∈ Θ)11(Ac2n) + 11(θ̂n + rn /∈ Θ)11(A2n)

≤ {11(θ̂n /∈ Θ0) + 11(θ̂n + rn ∈ Θ \Θ0)}+ 11(∅).

Hence, with Ac4n ≡ {θ̂n + rn /∈ Θ0} ∩ A3n,

R41n ≤
∣∣∣M1n(θ̂n + rn)−M1n(θ̂n)

∣∣∣11(A3n){11(θ̂n /∈ Θ0) + 11(θ̂n + rn ∈ Θ \Θ0)}

+2
∣∣∣M1n(θ̂n)−M1n(θ0)

∣∣∣{11(θ̂n /∈ Θ0) + 11
(
{θ̂n + rn /∈ Θ0} ∩ A3n

)
+ 11(Ac3n)

}
≤ C‖rn‖11(A3n)

{
11(θ̂n /∈ Θ0) + 11(θ̂n + rn ∈ Θ \Θ0)

}
+C‖θ̂n − θ0‖

{
11(θ̂n /∈ Θ0) + 11(Ac4n) + 11(Ac3n)

}
≤ C · (log n)2{‖β̂n‖+ ‖Σ̂n‖}{11(θ̂n /∈ Θ0) + 11(Ac4n)}

+C · ‖θ̂n − θ0‖
{

11(θ̂n /∈ Θ0) + 11(Ac4n) + 11(Ac3n)
}
. (6.11)

By condition ??, there exist C ∈ (0,∞) and ε1 ∈ (0, ε0
2

) such that

Ac4n ⊂ {‖θ̂n − θ0‖ >
ε0
2
} ∪ {‖rn‖ >

ε0
2
}

⊂ {‖θ̂n − θ0‖ > ε1} ∪ {(log n)2(‖β̂n‖+ ‖Σ̂n‖) > C} (6.12)

and Ac3n ⊂ {‖θ̂n − θ0‖ > ε1} for all n ≥ 1. Hence, it follows that

R41n ≤ C · (log n)2{‖β̂n‖+ ‖Σ̂n‖}
[
11(‖θ̂n − θ0‖ > ε1) + 11

(
[log n]2(‖β̂n‖+ ‖Σ̂n‖) > C

)]
+C · ‖θ̂n − θ0‖

[
11(‖θ̂n − θ0‖ > ε1) + 11

(
[log n]2(‖β̂n‖+ ‖Σ̂n‖) > C

)]
(6.13)

for all n ≥ 1. Let Wn = (n‖β̂n‖ + n‖Σ̂n‖). Note that by uniform integrability of {(
√
n‖θ̂ −

θ‖)2}m≥1 and the fact that E | Wn |1+η= O(1),

E(R41n)

≤ Cn−1(log n)2
[(
E | Wn |1+η

) 1
1+η
(
P (‖θ̂n − θ0‖ > ε1

) η
1+η

+E | |Wn |1+η {n−1(log n)2}η
]

+C
[
ε−1

1 E‖θ̂n − θ0‖211(‖θ̂n − θ0‖ > ε1)

+
(
E‖θ̂n − θ0‖2

)1/2{
P (n−1(log n)2|Wn| > C)

} 1
2
]

= o(n−1) as m→∞. (6.14)
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This proves the first part of Theorem 3.1.

Next we consider the bound on the variance of the tilted MSPE estimator. Since

sup{|Mkn(θ)|2 : θ ∈ Θ} = O(n−2) for k = 2, 3, by Cauchy-Schwarz inequality, it is enough

to show that

Var
(
M1n(θ̌n)

)
= O(n−1). (6.15)

By Taylor’s expansion,

M1n(θ̌n) = M1n(θ0) +

p∑
j=1

M
(j)
1n (θ0)[θ̌n − θ0]ej +R6n

where |R6n| ≤ C(p)∆‖θ̌n − θ0‖2 and ∆r = lim supn→∞ sup{|Mα
1n(θ)| : θ ∈ Θ, |α| = r}, r =

1, 2. Also, let A5n = {θ̂n + rn ∈ Θ, |M (1)
1n (θ̂n)|−1 ≤ (1 + log n)2}. Thus, it follows that

ER2
6n ≤ C(p,∆2)E‖θ̌n − θ0‖4

= C(p,∆2)
[
E‖θ̂n + rn − θ0‖411(A5n) + E‖θ̂n − θ0‖411(Ac5n)

]
≤ C(p,∆2)23

[
E‖θ̂n − θ0‖4 + E‖rn‖411(A5n)

]
≤ C(p,∆0,∆1,∆2)

[
E‖θ̂n − θ0‖4 + (1 = log n)8n−4

]
= O(n−2). (6.16)

By similar arguments and Cauchy-Schwarz inequality,

E
[
θ̌n − θ0

]ei+ej
= E

[
θ̂n − θ0

]ei+ej
+O

(
E‖rn‖211(A5n) +

{
E‖hthn− θ0‖2

}1/2{
E‖rn‖211(A5n)

}1/2

= O(n−1) +O(n−3/2[log n]2.

Hence, it follows that

Var
( p∑
j=1

M
(j)
1n (θ0)[θ̌n − θ0]ej

)
=

p∑
i=1

p∑
j=1

M
(i)
1n (θ0)M

(j)
1n (θ0)Cov

(
[θ̌n − θ0]ei , [θ̌n − θ0]ej

)
=

p∑
i=1

p∑
j=1

M
(i)
1n (θ0)M

(j)
1n (θ0)Cov

(
[θ̌n − θ0]ei , [θ̌n − θ0]ej

)
= O(n−1). (6.17)
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Hence, by (6.16), (6.17), and Cauchy-Schwarz inequality, (6.15) follows. This completes the

proof of Theorem 3.1.

Proof of Proposition 4.1: For b = 1, . . . , B, let Υ∗b1j = Ψ̃∗bn (θ̂n+anej)−Ψ∗bn (θ̂n+anej) and

let Υ∗b2j be defined by replacing θ̂n + anej by θ̂n − anej in Υ∗b1j, 1 ≤ j ≤ p. Then, by Taylor’s

expansion ∣∣∣E∗M∗(j)
1n (θ̂n)−M1n(θ̂n)

∣∣∣
=
∣∣∣(2an)−1

[
M1n(θ̂n + anej)−M1n(θ̂n − anej)

]
−M1n(θ̂n)

∣∣∣
≤ Can sup{M1n(θ) : θ ∈ Θ}.

Next, by (conditional) independence of {Υ∗bkj : b = 1, . . . , B}, k = 1, 2,

Var∗([2Ban]−1

B∑
b=1

[Υ∗b1j −Υ∗b2j]) = O(a−2
n B−1), k = 1, 2.

This proves the first part of Proposition 4.1. The proof of the second part is similar and

hence, is omitted.

Proof of Proposition 4.2: Similar to the proof of Proposition 4.1 and hence is omitted.
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Not bias-corrected Bias-corrected

n Model Mean RMSE Mean RMSE

50 1 0.966 0.976 0.547 1.216

2 0.534 0.940 0.488 0.964

120 1 0.317 0.564 0.103 0.568

2 0.169 0.547 0.135 0.604

500 1 0.043 0.297 0.003 0.353

2 0.098 0.311 0.049 0.377

Table 1: Bias and Root mean squared error (RMSE) for the estimators (with and without

bootstrap based bias correction) of the mean squared prediction errors for models in (5.1)-

(5.2) for sample size(n) = 50, 120 and 500, number of replications(N) = 500 and number

of bootstrap samples(N0) = 1000.
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Figure 1: Boxplots of RMSE values of the estimators (with bias-correction (b.c.) and without

bias correction (n.b.c.)) of the mean squared prediction errors for n=50, 120 and 500 under

the three models as in (5.1)-(5.2)
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