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Abstract

Many fields seek to identify steric influences in
protein-ligand binding specificity. In some cases, these
influences can be found by visually comparing protein
structures, but subtler influences, whose significance
may only be apparent from the analysis of many
structures, are harder to find. To assist this process,
we present VASP-S (Volumetric Analysis of Surface
Properties withStatistics), an unsupervised volumetric
analysis and statistical model for isolating statistically
significant structural variations that may influence
specificity. We applied these methods to analyze se-
quentially nonredundant structural representatives of
two well-studied protein families: the canonical serine
proteases and the enolase superfamily. We observed
that statistically significant structural variations, as
identified by VASP-S, reproduced experimentally estab-
lished determinants of specificity. These results sug-
gest that unsupervised methods, supported by statis-
tical models, may be able to automatically identify
variations that sterically influence specific binding in
catalytic sites.

1. Introduction

A shared challenge in structural biology, protein
engineering, and drug design is the elucidation of
the molecular mechanisms underpinning protein-ligand
binding specificity. Understanding these mechanisms
may reveal how protein selectivity organizes crowded
molecular environments [1], how proteins could be
mutated to alter binding preferences [2], or how el-
ements of protein structures affect drug resistance [3].
The heart of this challenge lies in the fact that the
molecular mechanism that drives preferential binding
arises from multiple structural elements, such as amino
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acid sidechains [3] and cavity regions [4]. When the
elements involved in this mechanism are unknown, a
combinatorial space of possibilities must be ruled out
in order to determine the actual causes of preferential
binding.

Undertaking this process experimentally can be im-
practical without a guiding hypothesis. One source of
such hypotheses lies in the differing shapes of ligand
binding cavities in families of closely related proteins.
Among aligned protein cavities, regions where cavities
vary may cause differing substrates to bind. Overlap-
ping regions might bind a molecular fragment that is
common to substrates acted on by the entire family.
This effect occurs in serine proteases, where binding
cavities differ in size to better accommodate differently
sized substrates [5]. A similar effect can be seen in
the enolase superfamily, where different amino acids
arranged around a common scaffold enable different
reactions to be catalyzed [6]–[8]. Variations of this
kind can sometimes be identified by visual inspection,
but when many variations exist, it is frequently unclear
which of the variations found, if any, are significant
enough to evaluate experimentally as potential speci-
ficity determinants.

This paper reports a computational method for
identifying significant cavity variations called VASP-
S (Volumetric Analysis of Surface Properties with
Statistics). Applying existing methods [9] to represent
protein structures and cavities as geometric solids, and
compare them with Boolean Set operations (Figure 1),
VASP-S adds the new capability to separate individual
regions, calledfragments, that lie within one cavity and
not within another (e.g. Figure 1h,i). Thus, a fragment
is one of potentially several variations between two
cavities. VASP-S can also construct a statistical model
of the volumes of fragments that occur in the binding
cavities of proteins with identical specificity, enabling
it to detect fragments with statistically significant (e.g.
unusually large) volume. We hypothesize that the ex-



istence of a statistically significant fragment indicates
a variation in cavity shape that is large enough to
accommodate different ligands, and thus a cause of
different binding preferences.

We tested this hypothesis on two sequentially nonre-
dundant families of protein structures: the serine pro-
tease and enolase superfamilies. On these data sets,
in cross-validated experimentation, we observed that
the largest fragments between cavities with different
binding preferences were statistically significant. In
many cases, they reproduced experimentally estab-
lished influences on specificity. We also observed that
the volumes of fragments between cavities with iden-
tical binding preferences were almost always statisti-
cally insignificant. These results point to applications
for discovering the structural mechanisms that affect
binding preferences, or gathering evidence that such
mechanisms do not exist.

2. Related Work

The solid representations of protein structures and
binding cavities used by VASP-S differ considerably
from typical comparison algorithms, which use point-
based and surface-based representations. Point-based
representations encode atoms in protein structures us-
ing points in three dimensions [10]–[14], matrices
of distances between points [15], and nodes in ge-
ometric graphs [16], [17]. These representations are
traditionally applied to rigidly superpose and align
whole protein structures, but, more recently, flexible
methods [18] have also emerged. A second type of
point-based representation is specialized for the com-
parison of functional sites, using motifs in three dimen-
sions that encode atoms in catalytic sites [19]–[21],
evolutionarily significant amino acids [22], “pseudo-
centers” representing protein-ligand interactions [23],
and pseudoatoms representing amino acid sidechains
[24]. Point-based methods exhibit extreme efficiency,
enabling them to rapidly search for evolutionarily
remote homologs [19], [20], [25] in large databases
of protein structure [26], but they are not intended for
isolating variations in empty cavity regions, like the
methods presented here.

Surface-based representations employ closed sur-
faces or surface patches to represent or approximate
solvent-accessible shape [27], [28]. These representa-
tions are built from triangular meshes [29], [30], alpha
shapes [31]–[33], three dimensional grids [34], and
spherical harmonics [35]–[37]. In some cases surface
representations have been applied for the comparison
of protein structures [29], [30] and electrostatic po-
tentials [38], as well as in hybrid representations that

Fig. 1. Isolating Significant Cavity Regions with
Boolean Set Operations. A. A diagram of Boolean
Set operations, showing the borders of input re-
gions (dotted) and output (solid), in grey. B,D) Poly-
gons representing regions occupied by protein X
(blue) and protein Y (red), their molecular surfaces
(black lines), and their binding cavities x (light blue)
and y (light red). C) Superimposition of x and y,
based on a whole structure alignment of X and Y.
In E, F, and G, the superposition of x and y is
depicted as dotted lines. Regions in solid lines were
computed with Boolean set operations. E) The dif-
ference of x and y. F) The intersection of x and y. G)
The difference of y and x. H) Statistically significant
fragments from E and G. I) Statistically insignificant
fragments from E and G.

combine point-based and surface-based information
[39], but they have had widest application in the
identification of cavities and hot spots [40] in protein
surfaces [31], [41]–[43]. While surface-based methods
identify and compare surface cavities, VASP-S offers
the new capability of isolating individual variations
within cavities.

To the space of point-based and surface-based rep-
resentations, the geometric solids used in VASP-S
[9] contribute an orthogonal third representation for
the comparison of protein structures. Comparisons
with Boolean set operations are related to volumetric
methods that measure volume differences in catalytic
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sites [33], [44] and electrostatic isocontours [38], and
to methods for identifying regions where substrates
overlap [45], but VASP-S differs because it can isolate
individual varying regions, as we illustrate in Section
3.1. In our results, this capability enables steric in-
fluences on ligand binding specificity to be identified
automatically.

Statistical modeling plays a critical role in the
unsupervised comparison of protein structures, espe-
cially in the identification of geometrically similar
catalytic sites at remote evolutionary distances. In that
application, statistical modeling enables the compu-
tation of data-specific thresholds to identify catalytic
sites that are improbably similar, and thus potential
markers of functional similarity. Several independent
results, using Gaussian mixture models [20], extreme
value distributions [46], nonparametric models [19],
and empirical models [32], [47], have observed that
statistically significant geometric similarity is an accu-
rate marker of similar functional sites. In this work,
VASP-S introduces a new application for statistical
modeling by characterizing the statistical significance
of variations in catalytic sites.

3. Methods

As described in earlier work [9], beginning with
solid representations of two aligned cavities, Boolean
set operations can identify regions within one cavity
and not another, but they do not separate individ-
ual fragments. This section describes, first, a general
approach for the topological separation of fragments
following Boolean set operations, second, how this
information can be used to train a statistical model of
fragment volume, and finally, the construction of data
sets to test these methods.

3.1. Identifying Fragments

We begin with two geometric solids,A (Figure 2a)
andB (Figure 2c), representing cavities from aligned
protein structures. Using Boolean Set operations, we
computeAB, the region insideA and not insideB, as
well asBA, the region insideB and notA. Like A

andB, AB andBA are geometric solids represented
by closed triangular meshes. Fragments fromAB and
BA are, together, referred to as the set of fragments
relating to cavitiesA andB (Figure 2b).

First, we translate the triangular mesh ofAB and
BA into a graphG, mapping corners to graph nodes,
and triangle edges to graph edges. SinceG is likely
to have several connected components, we separate
each connected component into an individual graph

Fig. 2. Input cavity A (light blue,A) and B (light
red,C). Fragments derived from AB and BA, la-
beled with lower case letters, original cavities out-
lined in dotted lines (B). Fragments translated into
connected components (solid lines, labeled G1-G4),
original cavities outlined in dotted lines (D). A ray
(arrow) from a corner of G4, drawn from the enlarged
perspective of the dark box in D (E). The directed
graph, H , with nodes G1 − G4, connected based
on containment. The dotted line separates nodes
of different depths. Yellow ovals indicate subgraphs
relating to the same fragment, labeled with lower
case letters (F). Cavity A is shown atypically, in a
disconnected manner, to illustrate the algorithm.

Gi (Figure 2d). This can be accomplished through
depth first search in linear time [48]. Each connected
component does not necessarily represent an individ-
ual fragment, because fragments occasionally contain
interior voids, as illustrated in Figure 2b, that are
composed of multiple disconnected components.

Next, we determine which connected components
reside within another connected component. This is
accomplished with ray casting (Figure 2e). For each
componentGi, a ray, beginning at one point onGi

is pointed in a random direction, and the number
of intersections with other components is counted.
If the ray intersects another componentGj an even
number of times, then we say thatGi is not insideGj .
Alternately, if the ray intersectsGj an odd number of
times, then we say thatGi is insideGj . For all pairs
Gi andGj , we determine which contains the other.

Finally, we represent the pattern of containment as
a directed acyclic graphH (Figure 2f), where each
node represents a graphGi, and an edge fromGi to
Gj indicates thatGi is within Gj according to the test
above. Using the topology ofH , we can determine
which Gi are part of the same fragment: First, we
identify subgraphsGik that are not contained inside
any other graph, because their in-degree is zero. From
eachGik , we perform a depth first search and assign
an integer depthd to eachGi considered. SinceH is
an acyclic graph, someGi may be visited more than
once. In these cases, if the number of edges traversed
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p(v(F ′) ≥ v(F )) = 1− Φ(
log v(F )− µ

σ
) ≈ 1− Φ(

log v(F )− x

s
). (1)

Fig. 3. Estimating the probability p of observing a fragment F ′, with volume v(F ′) ≥ v(F ), using the
mean (x) and variance ( s) of the distribution of the log-transformed sample values t o estimate µ and σ.
Φ is the cumulative distribution function of the standard nor mal distribution

from the originatingGij to the currentGi is greater
than the depth assigned already,d is reassigned the
larger value. This reassignment process determines the
number of times each graphGi is nested within the
entire group of connected components, since the largest
possible depth reflects the actual number of times one
graph is nested inside the others.

Finally, we separateH into subgraphs. EachGi

with an even depthd is an exterior surface for one
fragment. Based on the topology ofH , eachGi with
an odd depthd resides inside an exterior surface with
even depth equal tod − 1. Thus, we can associate
the graphsGi into groups that are all part of the
same fragment, and output the fragment. This correctly
separates fragments of arbitrary nesting.

3.2. A Statistical Model of Fragment Volume

Our statistical model is based on a hypothesis testing
framework that detects fragments with volume large
enough to be statistically significant, i.e. unlikely to oc-
cur by random chance. The underlying assumption of
our model is that fragments derived from cavities with
no difference in specificity will havesmall volumes
related to incidental and functionally irrelevant struc-
tural variation. Alternatively, if there exists a structural
variation in one cavity large enough to create a steric
influence on specificity, then the fragment generated by
the variation between the cavities will haveunusually
large volume. Thus, for a query fragmentF , based on
cavitiesA andB, our null hypothesis asserts that the
volume ofF , v(F ), is small. The alternative hypothesis
asserts thatv(F ) is unusually large. Since they are
logical complements, exactly one of these hypotheses
can hold for any fragmentF .

We test the null hypothesis by first assuming that it
holds forF , and then estimating the probabilityp of
randomly observing another fragmentF ′, with volume
v(F ′) ≥ v(F ). If the probability of randomly observ-
ing another fragment with larger volume is improbably
low, typically below 0.05, then it is hard to continue
assuming thatF is small. In this circumstance, the
null hypothesis is rejected as improbable, leaving us
to favor the alternative hypothesis, thatF is large.
The biological interpretation of this decision follows
from our underlying assumption:F is unusually large,
and may thus be a structural variation in eitherA or
B that creates a steric influence on specificity. This

statement is a prediction based on quantified evidence,
not a statement of fact.

In order to perform this prediction, we must estimate
the probabilityp, which requires us to first train the
statistical model. Training begins with aligned cavities
from the training sets described in Section 3.3. First,
we separate the fragments generated between all pairs
of cavities using the method described in Section 3.1.
Using the Surveyor’s Formula [49], which provides
a rapid and very accurate estimation of volume in
a closed surface, we compute the volume of each
fragment. These data are represented in a frequency
distributionD (See Figure 5A). The shape ofD closely
fits a log-normal distribution, as seen in Section 4.1.

SinceD fits log-normal(µ, σ), we can use the log-
normal distribution to smoothly estimate the probabil-
ity p of observing any a fragmentF ′, with volume
greater than or equal to the volume of our query
fragmentv(F ). This estimation occurs when we realize
that the meanµ and the varianceσ of the log-normal
distribution are unknown: we estimateµ and σ with
the meanx and variances from the distribution of log-
transformed values ofD. We can thus estimatep using
Equation 1.p is the proportion of the volume under the
log-normal curve to the right ofv(F ), relative to the
total volume under the curve (x ≥ 0).

Fitting the log-normal function toD enables this
probability to be estimated without the discretizing
effect of the training data. Also, assuming that the log-
normal distribution is a sufficiently accurate estimation
of the underlying probability density function, we can
extrapolate the probability beyond the largest volume
observed in our training data. Such extrapolation would
not be possible using nonparametric models, which
have finite support. The accuracy of this extrapolation
is illustrated in our results.

Having trained our statistical model on fragments
derived from cavities with identical binding specifici-
ties, we hypothesize that our statistical model will
behave as follows: Fragments generated between a
cavity with similar binding preferences and a cavity
with different binding preferences are be expected to
have a statistically significant fragment, if there exists
a steric influence on specificity. Likewise, for two
cavities having the same binding preferences as the
training set, fragments generated between them are
not expected to be statistically significant. We test this
hypothesis in our experimental results.
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Serine Protease Superfamily:
Trypsins: 2f91, 1fn8, 2eek, 1h4w, 1bzx, 1aq7,
1ane, 1aks, 1trn, 1a0jChymotrypsins: 1eq9, 8gch
Elastases:1elt, 1b0e
Enolase Superfamily:
Enolases:1e9i, 1iyx, 1pdy, 2pa6, 3otr, 1te6Man-
delate Racemase:1mdr, 2ox4 Muconate Lac-
tonizing Enzyme: 2pgw, 2zad

Fig. 4. PDB codes of structures used.

3.3. Data Set Construction

Protein Families. The serine protease and the enolase
superfamilies were selected for demonstrating VASP-
S because several sequentially nonredundant structures
exist for both superfamilies. Each superfamily con-
tained at least three subfamilies with distinct binding
preferences and at least two nonredundant structural
representatives in each subfamily.

Serine proteases catalyze the hydrolysis of spe-
cific peptide bonds by recognizing neighboring
amino acids with specificity subsites numbered
S4, S3, . . . S1, S1′, S2′, . . . , S4′. Each subsite prefer-
entially binds one amino acid before or after the
hydrolyzed bond betweenS1 andS1′. Our demonstra-
tion, on three subfamilies, focuses on theS1 subsite,
which binds aromatics in chymotrypsins [50], posi-
tively charged amino acids in trypsins [51], and small
hydrophobics in elastases [52].

Members of the enolase superfamily catalyze a
variety of reactions that involve the abstraction of a
proton from a carbon adjacent to a carboxylic acid
[6]. Assisted by an N-terminal “capping domain” [53],
amino acids at the C-terminal ends of beta sheets in
a conserved TIM-barrel act as acid/base catalysts to
facilitate several different reactions [6]. Our demon-
stration, on three subfamilies, is focused on the pri-
mary catalytic site, which facilitates the dehydration
of 2-phospho-D-glycerate to phosphoenolpyruvate in
enolase, [54], the conversion of (R)-mandelate to and
from (S)-mandelate [55] in mandelate racemase, and
reciprocal cycloisomerization of cis,cis-muconate and
muconolactone in muconate-lactonizing enzyme [6].
Selection.The Protein DataBank (PDB - 6.21.2011)
[26] contains 676 Serine proteases from chymotrypsin,
trypsin, and elastase subfamilies and 66 enolase su-
perfamily structures from enolase, mandelate race-
mase, and muconate cycloisomerase subfamiles. From
each set, we removed mutant and partially ordered
structures. Because enolases have open and closed
conformations, all closed or partially closed structures
were removed. Next, structures with greater than 90%
sequence identity were removed, with preference for
structures associated with publications, resulting in

Fig. 5. Histogram counting of the number of frag-
ments between pairs of trypsin cavities, in volume
bins (A), and in log(Volume) bins plotted against the
best fitting Gaussian (B). Quantile-quantile plots of
trypsin fragment volumes relative to the best fitting
Gaussian (C) and Gamma distributions (D).

14 serine protease and 10 enolase structures (Figure
4). Within these structures, ions, waters, and other
non-protein atoms were removed. Since hydrogens
were unavailable in all structures, all hydrogens were
removed for uniformity. Atypical amino acids (e.g.
selenomethionines) were not removed.
Alignment. Ska [14], an algorithm for whole-protein
structure alignment, was used to align all serine pro-
tease structures to bovine gamma-chymotrypsin (pdb
code: 8gch), and all enolase superfamily structures to
mandelate racemase from pseudomonas putida (pdb
code: 1mdr). Since proteins in these datasets have
identical folds, alignments to a different structure has
little effect: This was observed earlier [9], where cavity
comparisons, recomputed with the same method, gen-
erated identical results. Beginning with this alignment,
solid geometric representations of binding cavities
were generated with a method described earlier [9],
based on cavities defined in SCREEN [41].

4. Experimental Results

4.1. Validating the Statistical Model

We constructed a statistical model based on all
trypsin cavities and a second based on all enolase
cavities. The distribution of fragment volumes between
trypsin and enolase cavities is illustrated in Figure 5a.
Fragments with volumes near zero dominated, though
both distributions exhibited a positive tail. Seeking
the best fitting parametric model, we tested gamma,
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Fig. 6. Histograms of fragments in p-value bins, de-
picting fragments from cavities with different speci-
ficities (dark blue) and fragments from cavities with
similar specificities (light red), in proteins from ser-
ine protease (A) and enolase (B) superfamilies.

Weibull, Pareto, generalized extreme value, and log-
normal distributions.

In both Trypsin and Enolase sets, we observed that
log-normal distributions fit the observed data best.
This is apparent in part when considering how well
the Gaussian distribution fits the log of the fragment
volumes (Figure 5b), but even more so when consid-
ering the quantile-quantile (q-q) plots comparing the
log of observed fragment volumes versus a Gaussian
distribution (Figure 5c). Other distributions considered
led to poorer q-q plots: The second best, in both
cases was the gamma distribution (Figure 5d). Enolase
plots (not shown) were similar in overall shape, and
supported the same conclusions. All plots are available
here: www.cse.lehigh.edu/∼chen/papers/BIBM2011

4.2. Calculating Fragment Significance

We calculated the statistical significance of frag-
ments that exist between cavities with different bind-
ing specificities, in a leave-one-out manner: First, the
statistical model was trained on all but one trypsin or
enolase cavity. With the remaining trypsin or enolase
cavity and each of the non-trypsin or non-enolase
cavities, we determined the largest fragment, and mea-
sured its p-value. This process was repeated once
each trypsin and enolase cavity, producing 40 trypsin
fragments and 36 enolase fragments (Figure 6, dark
blue).

We also calculated the statistical significance of
fragments that exist between cavities with the same
binding specificities. In a leave-two-out experiment,
we first trained the statistical model with all but two
trypsins or elastases. With the remaining two trypsins
or elastases we computed thep-value of all fragments.
This process was repeated for every combination of
two members in the trypsin and enolase sets, producing
1893 trypsin fragments and 340 enolase fragments
(Figure 6, light red).

The largest fragments from cavities with different
binding preferences were always statistically signifi-

Fig. 7. S1 specificity site of Atlantic salmon trypsin
(transparent, yellow). Statistically significant frag-
ment within the trypsin cavity and not within the
S1 specificity site of porcine pancreatic elastase
(opaque, teal). Gly-Ala-Arg peptide modeled from
Fusarium oxysporum trypsin (black sticks).

cant, following the standard 0.05 threshold of statistical
significance. By the same standard, fragments from
cavities with identical binding preferences were rarely
significant, exhibiting widely distributedp-values.

4.3. Verifying Fragment Function

Statistically significant fragments identified several
variations in cavity shape that influence binding pref-
erences. One example, illustrated in Figure 7 depicts
a statistically significant fragment that is within the
S1 specificity site of Atlantic salmon trypsin (pdb
reference: 1a0j) and not within the S1 specificity site
of porcine pancreatic elastase (pdb reference: 1b0e).
The fragment occupies a volume of 144Å3, and is the
largest of several differences between these cavities.
The position of the fragment highlights a region in
the trypsin cavity that extends deeper than the elastase
cavity. This region is essential for accommodating
the longer, positively charged substrates preferred by
trypsins [51]. A modeled Gly-Ala-Arg peptide illus-
trates this point in Figure 7. Much like this example,
similar significant fragments could be found between
all trypsin and elastase cavities, as well as between
trypsin and chymotrypsin cavities. A second class
of related effects were observed in enolase cavities,
where sidechains protruding from different parts of
the conserved beta-barrel scaffold created differences
in cavity shape that accommodate different catalytic
reactions.
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5. Conclusions

We have presented a computational method for
generating fragments and a statistical model for es-
timating the significance of fragment volume. To our
knowledge, VASP-S is the first algorithm capable of
separating individual differences in cavity shape, and
also the first to measure their statistical significance,
creating a new strategy for identifying influences on
protein-ligand binding specificity.

After verifying the choice of distributions for our
statistical model, we demonstrated VASP-S by iden-
tifying statistically significant fragments by volume,
from serine protease and enolase cavities. In both
cases, the largest fragment between cavities with dif-
ferent binding preferences was always statistically
significant, while all fragments between cavities with
identical binding preferences were rarely so. By iden-
tifying differences in binding cavity shape that are too
large to have randomly occurred between cavities with
identical binding preferences, this approach predicts
cavity regions that drive different binding preferences.

We verified the accuracy of some of these predic-
tions by relating them to experimentally established
observations, where possible. In both serine protease
and enolase datasets, the most statistically significant
fragment was frequently a difference in binding cavity
geometry that enabled the accommodation of differ-
ently shaped substrates. While other physical phenom-
ena (e.g. electrostatics [51]) are known to influence
specificity in both datasets, statistically significant frag-
ments remained strong markers of structural influences
on specificity. On other data sets, variations in shape
may not be as strongly correlated with specificity. This
possibility points to potentials for future work.

Applications of VASP-S exist in contexts where the
detailed comparison of protein cavities is required.
For example, in drug design, statistically significant
fragments in ligand binding cavities may identify vari-
ations in cavity shape that can be exploited for more
selective inhibitors. In concert with other sources of
information, technologies like VASP-S offers new tools
for the elucidation of of protein-ligand interactions.
Acknowledgment. The authors sincerely thank Via-
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