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This paper develops empirical likelihood methodology for irreg-
ularly spaced spatial data in the frequency domain. Unlike the fre-
quency domain empirical likelihood (FDEL) methodology for time
series (on a regular grid), the formulation of the spatial FDEL needs
special care due to lack of the usual orthogonality properties of the
discrete Fourier transform for irregularly spaced data and due to
presence of nontrivial bias in the periodogram under different spatial
asymptotic structures. A spatial FDEL is formulated in the paper
taking into account the effects of these factors. The main results of
the paper show that Wilks’ phenomenon holds for a scaled version
of the logarithm of the proposed empirical likelihood ratio statistic
in the sense that it is asymptotically distribution free and has a chi-
squared limit. As a result, the proposed spatial FDEL method can
be used to build nonparametric, asymptotically correct confidence
regions and tests for covariance parameters that are defined through
spectral estimating equations, for irregularly spaced spatial data. In
comparison to the more common studentization approach, a major
advantage of our method is that it does not require explicit estimation
of the standard error of an estimator, which is itself a very difficult
problem as the asymptotic variances of many common estimators de-
pend on intricate interactions among several population quantities,
including the spectral density of the spatial process, the spatial sam-
pling density and the spatial asymptotic structure. Results from a
numerical study are also reported to illustrate the methodology and
its finite sample properties.

1. Introduction. In recent years, there has been a surge in research in-
terest in the analysis of spatial data using the frequency domain approach;
see, for example, Hall and Patil [13], Im, Stein and Zhu [14], Fuentes [9, 10],
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Matsuda and Yajima [23], and the references therein. An intent of frequency
domain analysis is to allow for inference about covariance structures through
a data transformation and possibly without a full spatial model, though this
approach has complications. In contrast to the time series case where ob-
servations are usually taken at regular points in time, the data sites are
typically irregularly spaced for random processes observed over space. The
lack of a fixed spacing and possible non-uniformity of the (irregularly spaced)
data-locations destroy the orthogonality properties of the sine- and cosine-
transforms of the data, making Fourier analysis in such problems a chal-
lenging task. In a recent paper, Bandyopadhyay and Lahiri [1] (hereafter
referred to as [BL]) carried out a detailed investigation of the properties of a
suitably defined discrete Fourier transform (DFT) of irregularly spaced spa-
tial data, and provided a characterization of the asymptotic independence
property of the spatial DFTs. In this paper, we utilize the insights and find-
ings of [BL] to formulate a frequency domain empirical likelihood (FDEL)
for such spatial data. The FDEL method is shown to admit a version of the
Wilks’ theorem for test statistics about spatial covariance parameters (e.g.,
having chi-square limits similarly to parametric likelihood), without explicit
assumptions on the data distribution or the spatial sampling design.

To highlight potential advantages of the FDEL approach in this context,
suppose that {Z(s) : s ∈ Rd} (d ∈ N ≡ {1, 2, . . .}) is a zero mean second
order stationary process that is observed at (irregularly spaced) locations
s1, . . . , sn in a domain Dn ⊂ Rd. Also, suppose that we are interested in
fitting a parametric variogram model {γ̌(·; θ) : θ ∈ Θ}, Θ ∈ Rp (p ∈ N) using
the least squares approach (cf. Cressie [6]). A spatial domain approach is
based on estimating the parameter θ using

θ̃n = argmin
{ m∑
i=1

(
2γ̃n(hi)− γ̌(hi; θ)

)2
: θ ∈ Θ

}
,

where h1, . . . ,hm are some user specified lags and where 2γ̃n(hi) is a non-
parametric estimator of the variogram of the Z(·)-process at lag hi. Since
the data locations s1, . . . , sn are irregularly spaced, a nonparametric esti-
mator 2γ̃n(·) of the variogram typically requires smoothing which results in
a slow rate of convergence, particularly in dimensions d ≥ 2. Further, the
asymptotic variance of θ̃n in such situations involves the spectral density of
Z(·)-process and the spatial sampling density of the data-locations s1, . . . , sn
(cf. Lahiri and Mukherjee [20]) which must be estimated from the data to
carry out inference on θ using the asymptotic distribution. In contrast, the
FDEL approach completely bypasses the need to estimate 2γ̌(·) directly and
it also carries out an automatic adjustment for the complicated asymptotic
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variance term in its inner mechanics, producing a distribution free limit law
that can be readily used for constructing valid tests and confidence regions
for θ. See Example 3 in Section 3 for more details of the FDEL construction
in this case and Section 6.2 for a data example demonstrating the advantages
of the proposed spatial FDEL method over the traditional spatial domain
approach. In general, the proposed FDEL method provides a nonparametric
‘likelihood’-based inference method for covariance parameters of a spatial
process observed at irregularly spaced spatial data-locations without requir-
ing specification of a parametric joint data model.

Originally proposed by Owen [31, 32] for independent observations, em-
pirical likelihood (EL) allows for nonparametric likelihood-based inference in
a broad range of applications (Owen [33]), such as construction of confidence
regions for parameters that may be calibrated through the asymptotic chi-
squared distribution of the log-likelihood ratio. This is commonly referred
to as the Wilks’ phenomenon, in analogy to the asymptotic distributional
properties of likelihood ratio tests in traditional parametric problems (Wilks
[38]). In particular, EL does not require any direct estimation of variance or
skewness (Hall and La Scala [12]). However, a difficulty with extending EL
methods to dependent data is then to ensure that “correct” variance esti-
mation occurs automatically within the mechanics of EL under dependence.
For (regularly spaced) time series data, this is often accomplished by using
a blockwise empirical likelihood (BEL) method (cf. Kitamura [16]), which
was further extended to the case of spatial data observed on a regular grid
by Nordman [25, 26] and Nordman and Caragea [27].

Monti [24] and Nordman and Lahiri [29] proposed periodogram-based
EL methods for time series data. Their works show that, in view of the
asymptotic independence of the DFTs, an analog of the EL formulation for
independent data satisfies Wilks’ phenomenon in the frequency domain. As
a result, the vexing issue of block length choice can be completely avoided by
working with the DFTs of (regularly spaced) time series data. In this paper,
we extend the frequency domain approach to irregularly spaced spatial data.
Such an extension presents a number of unique challenges that are inherently
associated with the spatial framework. First, the irregular spacings of the
data locations make the usefulness of the DFT itself questionable, as the ba-
sic orthogonality property of the sine- and cosine-transforms of gridded data
at Fourier frequencies (i.e., at frequencies ωj = 2πj/n for j = 0, 1, . . . , (n−1)
for a time series sample of size n) no longer holds (cf. [BL]). Secondly, un-
like the compact frequency domain [0, 2π] for regular time series, in the case
of irregularly spaced spatial processes sampled in d-dimensional Euclidean
space Rd, one must deal with the unbounded frequency domain Rd. Thirdly,
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as noted in Matsuda and Yajima [23] and [BL], the periodogram of irregu-
larly spaced spatial data can be severely biased (for the spectral density) and
must be pre-processed. Finally, in contrast to the unidirectional flow of time
that drives the asymptotics in the time series case, for irregularly spaced
spatial data on an increasing domain, more than one possible asymptotic
structure can arise depending on the relative growth rates of the volume
of the sampling region and the sample size (cf. Cressie [6], Hall and Patil
[13], Lahiri [17]). A desirable property of any FDEL method for irregularly
spaced spatial data would be to guarantee Wilks’ phenomenon for the spa-
tial FDEL ratio statistic with minimal or no explicit adjustments for the
different asymptotic regimes. This would ensure a sort of robustness prop-
erty for the spatial FDEL and would allow the user to use the method in
practice without having to explicitly tune it for the effects of different spatial
asymptotic structures, which is often not very obvious for a given data set
at hand (cf. Zhang and Zimmerman [39]).

To motivate the construction of our spatial FDEL (hereafter SFDEL),
first we briefly review some relevant results (cf. Section 2) that provide cru-
cial insights into the properties of the DFT and periodogram of irregularly
spaced spatial data under different spatial asymptotic structures. Our main
result is the asymptotic chi-squared distribution of the SFDEL ratio statistic
under fairly general regularity conditions on the underlying spatial process.
However, it turns out that the spatial asymptotic structure has a nontrivial
and nonstandard effect on the limit law. When the spatial sample size n
grows at a rate comparable to the volume of the sampling region, we shall
call this the pure increasing domain or PID asymptotic structure, while a
faster growth rate of n (due to infilling) will be called the mixed increasing
domain or MID asymptotic structure (see Section 2 for more details). To
describe the peculiarity of the limit behavior of the SFDEL, let Rn(θ0) de-
note the SFDEL ratio statistic for a covariance parameter of interest θ ∈ Rp
under H0 : θ = θ0 based on a sample of size n. The main results of the paper
show that under some regularity conditions,

(1.1) − 2 logRn(θ0)
d→ χ2

p

under MID with a sufficiently fast rate of infilling. In contrast, under PID
and under MID with a relatively slow rate of infilling, one gets:

(1.2) − 2 logRn(θ0)→d 2χ2
p.

Thus, the limit distribution of −2 logRn(θ0) here changes from the more
familiar χ2

p to a nonstandard 2χ2
p distribution, which points to the intricacies
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associated with spatial asymptotics. The main reason behind this strange
behavior of the SFDEL ratio statistic is the differential growth rates of two
components in the variance term of the DFTs of irregularly spaced spatial
data, which alternate in their roles as the dominating term depending on
the strength of the infill component.

To overcome the dichotomous limit behavior of −2 logRn(θ0) in (1.1) and
(1.2), we construct a data based scaling an = an(θ0) (say) and show that the
rescaled version, −an2 logRn(θ0) attains the same χ2

p limit, irrespective of
the underlying spatial asymptotic structure. This provides a unified method
for EL based inference on covariance parameters for irregularly spaced spa-
tial data. In addition, the proposed SFDEL method accomplishes two major
goals of the EL method of Owen [31, 32] for independent data:

(i) It shares the strength of EL methods to incorporate automatic vari-
ance estimation for spectral parameter inference in its mechanics under
different spatial asymptotic structures and, at the same time,

(ii) it avoids the difficult issue of block length selection.

A direct solution to either of these problems (i.e., explicit variance estimation
and optimal block length selection) in the spatial domain is utterly difficult
due to highly complex effects of the irregular spacings of the data sites
and the spatial asymptotic structures (cf. Lahiri [17], Lahiri and Mukherjee
[20]) and due to potentially non-standard shapes of the sampling regions
(Nordman and Lahiri [28], Nordman, Lahiri and Fridley [30]). Results from
a simulation study in Section 6 show that accuracy of the SFDEL method
with the data-based rescaling is very good even in moderate samples.

The rest of the paper is organized as follows. In Section 2, we describe
the theoretical framework and some preliminary results on the properties of
the DFT for irregularly spaced spatial data from [BL] that play a crucial
role in the formulation of the SFDEL method. We describe the SFDEL
method in Section 3 and give some examples of useful spectral estimating
equations. We state the regularity conditions and the main results of the
paper in Sections 4 and Section 5, respectively. Results from a simulation
study and an illustrative data example are given in Section 6. Proofs of the
main results are presented in Section 7. Further details of the proofs and
some additional simulation results are given in the [Supplement].

2. Preliminaries.

2.1. Spatial sampling design. Suppose that for each n ≥ 1 (where n de-
notes the sample size), the spatial process Z(·) is observed at data locations
s1, . . . , sn over a sampling region Dn ⊂ Rd. We shall suppose that Dn is
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obtained by inflating a prototype set D0 by a scaling factor λn ∈ [1,∞) as

(2.1) Dn = λnD0, n ≥ 1,

where (as the most relevant prototypical case) D0 is an open connected sub-
set of (−1/2, 1/2]d containing the origin and where λn ↑ ∞ as n→∞ with
λn � nε for some ε > 0. Note that this is a common formulation, allowing
the sampling region Dn to have a variety of shapes, such as polygonal, el-
lipsoidal, and star-shaped regions that can be non-convex. In practice, λn
can be determined by the diameter of a sampling region for use here (cf.
Garcia-Soidan [11], Hall and Patil [13], Maity and Sherman [22], Matsuda
and Yajima [23]). Let Z = {0,±1,±2, . . .}. To avoid pathological cases, we
require that for any sequence of real numbers {an}n≥1 such that an → 0+
as n→∞, the number of cubes of the form an(j+[0, 1)d), j ∈ Zd that inter-
sect both D0 and Dc0 is of the order O([an]−(d−1)) as n→∞. This boundary
condition holds for most regions of practical interest. We also suppose that
the irregularly spaced data locations s1, . . . , sn ∈ Dn are generated by a
stochastic sampling design, as

si ≡ sin = λnXi, 1 ≤ i ≤ n.

where {Xk}k≥1 is a sequence of independent and identically distributed
(iid) random vectors with probability density f(x) with support cl.(D0), the
closure of D0. Note that this formulation allows the number of sampling sites
to grow at a different rate than the volume of the sampling region, leading to
different asymptotic structures (cf. Cressie [6], Lahiri [17]). When n/λdn →
c∗ ∈ (0,∞), one gets the PID asymptotic structure while for n/λdn → ∞
as n → ∞, one gets the MID asymptotic structure. Limit laws of common
estimators are known to depend on the spatial asymptotic structure; see
Cressie [6], Du, Zhang and Mandrekar [8], Lahiri and Mukherjee [20], Loh
[21], Stein [36] and the references therein.

2.2. Spatial periodogram and its properties. Define the DFT dn(ω) and
the periodogram In(ω) of {Z(s1), . . . , Z(sn)} at ω ∈ Rd as

dn(ω) = λd/2n n−1
n∑
j=1

Z(sj) exp
(
ιω′sj

)
and In(ω) = |dn(ω)|2,(2.2)

where ι =
√
−1. In an equi-spaced time series, formulation and properties

of FDEL critically depend on the asymptotic independence of the DFTs
(cf. Brockwell and Davis [5], Lahiri [18]) at the Fourier frequencies: wj =
2πj/n, j = 1, . . . , n where n is the sample size. In a recent paper, [BL]



SPATIAL EMPIRICAL LIKELIHOOD 7

showed that the spatial DFTs (in (2.2)) at two sequences of frequencies
{ω1n}n≥1, {ω2n}n≥1 ⊂ Rd are asymptotically independent (i.e., the joint
limit law is a product of marginal limits) if and only if the frequency se-
quences are asymptotically distant:

(2.3) ‖λn(ω1n − ω2n)‖ → ∞ as n→∞.

This suggests that in analogy to the time series FDEL (i.e., using that
DFTs are approximately independent so that the independent data version
of EL may be applied to resulting periodogram values), the formulation of
spatial FDEL should preferably be based on DFTs at a collection of fre-
quencies that are well-separated. A second important finding in [BL] is that
unlike the case of the equi-spaced time series data, the spatial periodogram
In(·) has a nontrivial bias, depending on the spatial asymptotic structure.
In particular, [BL] shows that

EIn(ω) =
[
n−1λdnσ(0) +Kφ(ω)

]
(1 + o(1))

for all ω ∈ Rd, where σ(·) and φ(·) are respectively the auto-covariance
and the spectral density functions of the Z(·)-process and where K =
(2π)d

∫
Rd f

2(ω)dω. As a result, the spatial periodogram In(·) has a non-
trivial bias (for estimating Kφ(·)) at all frequencies under PID, while the
bias vanishes asymptotically under MID. However, the quality of estimation
of the spectral density (up to the scaling by K) improves under both PID
and MID through an explicit bias correction. Accordingly, we define the bias
corrected periodogram

Ĩn(ω) = In(ω)− n−1λdnσ̂n(0),ω ∈ Rd,(2.4)

where σ̂n(0) = n−1
∑n

i=1(Z(si) − Z̄n)2 is the sample variance, with Z̄n =
n−1

∑n
i=1 Z(si) denoting the sample mean. We shall use Ĩn(·) in our formu-

lation of the SFDEL in the next section.

3. The SFDEL method.

3.1. Description of the method. For iid random variables, Qin and Law-
less [34] extended the scope of Owen [31]’s original formulation, linking esti-
mating equations and EL, and developed EL methodology for such param-
eters. In a recent work, Nordman and Lahiri [29] (hereafter referred to as
[NL]) formulated a FDEL for inference on parameters of an equi-spaced time
series defined through spectral estimating equations (i.e., estimating equa-
tions in the frequency domain [−π, π]). In a similar spirit, we now define
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the SFDEL for parameters θ ∈ Θ ⊂ Rp, defined through spectral estimating
equations (but now defined over all of Rd). Specifically, let G : Rd×Θ→ Rp
denote a vector of bounded estimating functions such that Gθ(·) ≡ G(·; θ)
satisfies the spectral moment condition

(3.1)

∫
Rd
Gθ(ω)φ(ω)dω = 0,

where recall that φ(·) denotes the spectral density of the process Z(·). Be-
cause of their use in the SFDEL method to follow (cf. (3.3)), we refer to
the functions Gθ(ω) as estimating functions, though these are not functions
of data directly but rather of parameters θ ∈ Θ and frequencies ω ∈ Rd.
In view of the symmetry of the spectral density φ(·), without loss of gen-
erality (w.l.g.), we shall assume that Gθ(·) is symmetric about zero, i.e.,
Gθ(ω) = Gθ(−ω) for all ω ∈ Rd. An asymmetric Gθ(·) can always be sym-
metrized, as in Example 2 of Section 3.2 below where we give examples of
Gθ(·) in some important inference problems.

The SFDEL defines a nonparametric likelihood for the parameter θ us-
ing a discretized sample version of the above spectral moment condition.
Accordingly, for κ ∈ (0, 1), η ∈ [κ,∞) and C∗ ∈ (0,∞), let

(3.2) N = Nn =
{
jλ−κn : j ∈ Zd, j ∈ [−C∗ληn, C∗ληn]d

}
be the set of discrete frequencies, where λn is as in (2.1). Let N = |N | be
the size of N . For notational convenience, also denote the elements of N
by ωkn, k = 1, · · · , N (with an arbitrary ordering of the N elements of
N ). The frequency grid has two important qualities. First, since κ < 1, for
any j 6= k, the sequences {ωjn} and {ωkn} are asymptotically distant (cf.
(2.3)), guaranteeing their associated periodogram values are approximately
independent. Further, {ω1n, · · · ,ωNn} forms a regular lattice over the hyper-

cube
[
−C∗λη−κn , C∗λη−κn

]d
, with spacings of length λ−κn in each direction,

and [−C∗λη−κn ,−C∗λη−κn ]d ↑ Rd as λn ↑ ∞ when n→∞ for η > κ, covering
the entire range of the integral in (3.1) in the limit. That is, the frequency
grid expands to necessarily cover the entire frequency domain Rd of interest.
The exact conditions on κ and η are specified in Section 4 below.

Now using the frequencies {ωkn, k = 1, · · · , N}, we define the SFDEL
function for θ by
(3.3)

Ln(θ) = sup

{
N∏
k=1

pk :

N∑
k=1

pk = 1, pk ≥ 0 and

N∑
k=1

pkGθ(ωkn)Ĩn(ωkn) = 0

}
,
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provided that the set of pk satisfying the conditions on the right side is
nonempty. When no such {pk} exists, Ln(θ) is defined to be 0. We note that
the computation of (3.3) is the same as in EL formulations for independent
data; see Owen [32, 33] and Qin and Lawless [34] for these details.

Next note that without the spectral moment constraint,
∏N
k=1 pk attains

its maximum when each pk = 1/N . Hence, we define the SFDEL ratio
statistic for testing the hypothesis H0 : θ = θ0 as

Rn(θ0) = Ln(θ0)/(N
−N ).

The SFDEL test rejects H0 for small values of Rn(θ0). Similarly, one can
use the SFDEL method to construct confidence regions for θ using the large
sample distribution of the SFDEL ratio statistic. In Section 4, we state a set
of regularity conditions that will be used for deriving the limit distribution of
−2 logRn(θ0). This, in particular, would allow one to calibrate the SFDEL
tests and confidence regions in large samples.

3.2. Examples of estimating equations. We now give some examples of
spectral estimating equations for parameters of interest in frequency domain
analysis (cf. [5, 6, 15, 19]).

Example 1. (Autocorrelation). Suppose that we are interested in non-
parametric estimation of the autocorrelation of the Z(·)-process at lags
h1, · · · ,hp for some p ≥ 1. Then, θ = (%(h1), . . . , %(hp))

′ with %(h) =

corr(Z(h), Z(0)) =
∫

cos(h
′
ω)φ(ω)dω

/∫
φ(ω)dω where A′ denotes the

transpose of a matrix A. Thus, in this case,

(3.4) Gθ(ω) = (cos(h
′
1ω), · · · , cos(h

′
pω))

′ − θ.

Estimating functions can also be formulated with hypothesized autocor-
relations (e.g., white noise) to set-up goodness-of-fit tests in the SFDEL
approach, in the spirit of Portmanteau tests [5].

Example 2: (Spectral distribution function). For t = (t1, . . . , td)
′ ∈ Rd, let

Φ0(t) =

∫
11(−∞,t](ω)φ(ω)dω

/∫
φ(ω)dω

denote the normalized spectral distribution function, where 11(·) denotes the
indicator function and (−∞, t] = (−∞, t1] × · · · × (−∞, td]. The function
Φ0(·) plays an important role in determining the smoothness of the sample
paths of the random field Z(·) (cf. Stein [36]). Suppose that the parameter
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of interest is now given by θ = (Φ0(t1), . . . ,Φ
0(tp))

′ for some given set of
vectors t1, . . . , tp ∈ Rd. In this case, the relevant estimating function is
Gθ(ω) = [G̃θ(ω) + G̃θ(−ω)]/2, ω ∈ Rd, where

(3.5) G̃θ(ω) =
(

11(−∞,t1](ω), . . . , 11(−∞,tp](ω)
)′
− θ.

Example 3: (Variogram model fitting). A popular approach to fitting a
parametric variogram model to spatial data is through the method of least
squares (cf. Cressie [6]). Let {2γ̌(·; θ) : θ ∈ Θ}, Θ ⊂ Rp be a class of valid
variogram models for the true variogram 2γ̌(h) ≡ Var(Z(h)−Z(0)), h ∈ Rd
of the spatial process. Let 2γ(·; θ) ≡ 2γ̌(·; θ)/σ(0) and 2γ(·) ≡ 2γ̌(·)/σ(0)
denote their scale-invariant versions, where σ(0) = Var(Z(0)). Also, let
2γ̂n(h) denote the sample variogram at lag h based on Z(s1), . . . , Z(sn) (cf.
Chapter 2, Cressie [6]), scaled by σ̂n(0) = n−1

∑n
i=1(Z(si) − Z̄n)2 where

Z̄n = n−1
∑n

i=1 Z(si). Then one can fit the variogram model by estimating
the parameter θ by :

θ̂n = argmin
{ m∑
i=1

(
2γ̂n(hi)− 2γ(hi; θ)

)2
: θ ∈ Θ

}
for a given set of lags h1, . . . ,hm. This corresponds to minimizing the popula-
tion criterion

∑m
i=1

(
2γ(hi)−2γ(hi; θ)

)2
which, under some mild conditions,

determines the true parameter θ0 uniquely (cf. Lahiri, Lee and Cressie [19]).
Under these conditions, θ = θ0 is the unique solution to the equation

m∑
i=1

(
2γ(hi)− 2γ(hi; θ)

)
∇[2γ(hi; θ)] = 0,

where ∇[2γ(h; θ)] denotes the p×1 vector of first order partial derivatives of
2γ(h; θ) with respect to θ. Hence, expressing the variogram in terms of the
spectral density function, we get the following equivalent spectral estimating
equation:

(3.6)

∫ [ m∑
i=1

{
1− cos(h′iω)− γ(h; θ)

}
∇[2γ(hi; θ)]

]
φ(ω)dω = 0,

which can be used for defining the SFDEL for θ. As pointed out in Sec-
tion 1, the spatial domain approach yields asymptotically correct confidence
regions for θ through asymptotic normal distribution of θ̂n, but it necessar-
ily requires one to estimate the limiting asymptotic variance and is subject
to the curse of dimensionality, resulting from nonparametric smoothing in
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d-dimensions. In comparison, the SFDEL can be applied with the spectral
estimating equation (3.6) to produce asymptotically correct confidence re-
gion for θ, without explicit estimation of the standard error.

Note that the spectral estimating equation approach can also be extended
to estimation of θ based on the weighted- and the generalized- least squares
criteria (cf. Cressie [6], Lahiri, Lee and Cressie [19]), where in addition to
the partial derivatives, suitable weight matrices enter into the corresponding
versions of (3.6). A similar advantage of the spatial FDEL method continues
to hold in these cases.

In the next section, we introduce some notation and the regularity con-
ditions to be used in the rest of the paper.

4. Regularity conditions.

4.1. Notation and lemmas. First we introduce some notation. For x, y ∈
R, let x+ = max{x, 0}, bxc = the floor function of x, x∧ y = min{x, y} and
x∨ y = max{x, y}. Let Ik denote the identity matrix of order k (k ≥ 1). For
two sequences {sn} and {tn} in (0,∞), we write sn ∼ tn if limn→∞ sn/tn =
1. For x = (x1, . . . , xk)

′ ∈ Rk, let ‖x‖1 = |x1| + . . . + |xk| and ‖x‖ =
(|x1|2+ . . .+ |xk|2)1/2 respectively denote the `1- and `2-norms of x. Also, let
d1(E1, E2) = inf{‖x− s‖1 : x ∈ E1, s ∈ E2}, E1, E2 ⊂ Rk. For a, b ∈ (0,∞),
define the strong mixing coefficient of Z(·) as α(a; b) = sup{|P (A1 ∩ A2) −
P (A1)P (A2)| : Ai ∈ FZ(Ei), Ei ∈ Cb, i = 1, 2, d1(E1, E2) ≥ a} where
FZ(E) = σ〈Z(s) : s ∈ E〉 and Cb is the collection of d-dimensional rectangles
with volume b or less.

As indicated earlier, we suppose that the random field {Z(s) : s ∈ Rd}
is second order stationary (but not necessarily strictly stationary) with zero
mean and autocovariance function σ(·) and spectral density function φ(·).
Also, recall that the scaling sequence λn is as in (2.1) and that κ, η and N
are as in Section 3.1, specifying the SFDEL grid in the frequency domain.
Further, the constant c∗ ≡ limn→∞ n/λ

d
n determines the spatial asymptotic

structure where c∗ ∈ (0,∞) for PID and c∗ =∞ for MID. Write cn = n/λdn,
I∗n(ω) = In(ω) − c−1n σ(0) and An(ω) = c−1n σ(0) + Kφ(ω), ω ∈ Rd, where
K = (2π)d

∫
f2. Let Σn = 2

∑N
k=1Gθ0(ωkn)Gθ0(ωkn)′A2

n(ωkn). Also, let
Gj,θ0 denote the jth component of Gθ0 . Write b2n = Nc−2n + λκdn . From
Section 7, it follows that b2n gives a unified representation for growth rate
of the self-normalizing factor in the SFDEL ratio statistic under different
asymptotic structures considered in the paper.

4.2. Conditions. We are now ready to state the regularity conditions.
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(C.0) The strong mixing coefficient satisfies α(a, b) ≤ γ1(a)γ2(b), for any
a, b ∈ (0,∞), with respect to some left continuous non-increasing func-
tion γ1 : (0,∞) → [0,∞) and some right continuous non-decreasing
function γ2 : (0,∞)→ (0,∞).

(C.1) There exist δ ∈ (0, 1] such that ζ4+δ ≡ sup{(E|Z(s)|4+δ)
1

4+δ : s ∈
Rd} <∞ and

∑∞
k=1 k

3d[γ1(k)]
δ

4+δ <∞.
(C.2) (i) The spatial sampling density f(·) is everywhere positive on D0 and

satisfies a Lipschitz condition: There exists a C0 ∈ (0,∞) such that

|f(x)− f(y)| ≤ C0‖x− y‖ for all x,y ∈ D0.

(ii) There exist C1 ∈ (0,∞) and a0 ∈ (d/2, d] such that∣∣∣ ∫ eιω
′
xf(x)dx

∣∣∣+∣∣∣ ∫ eιω
′
xf2(x)dx

∣∣∣ ≤ C1‖ω‖−a0 for all ‖ω‖ > C1.

(C.3) (i) For each j = 1, . . . , p, Gj,θ0(·) is bounded, symmetric, and almost
everywhere continuous on Rd (with respect to the Lebesgue measure),
and

∫
Gθ0(ω)φ(ω)dω = 0;

(ii) There exist C2 ∈ (0,∞) and a non increasing function h : [0,∞)→
[0,∞) such that |φ(ω)| ≤ h(‖ω‖) for all ‖ω‖ > C2;

(iii) lim infn→∞ det
(
N−1

∑N
k=1Gθ0(ωkn)Gθ0(ωkn)′

)
> 0;

(iv)
∫
Gθ0(ω)Gθ0(ω)′φ2(ω)dω is nonsingular.

(C.4) (i) 0 < κ < η < 1; and

(ii) Σ
−1/2
n

∑N
k=1Gθ0(ωkn)I∗n(ωkn)

d−→ N(0, Ip).
(C.5)’ For each n ≥ 1, there exists a function Mn(·) such that

∥∥∥ N∑
k=1

Gθ0(ωkn)Gθ0(ωkn)′ exp(ιt′ωkn)
∥∥∥ ≤Mn(t) for all t ∈ Rd

and with dν(t,x) = ‖t‖γ1(‖t‖)
δ

4+δ f(x)dtdx and δ ∈ (0, 1] of (C.1),∫ ∫
Mn

(
t + a1[s + 2λna2x + 2λna3y]

)
dν(t,x)dν(s,y)

= o
(
b2nc

1−a1
n λ1+a1n

)
, for all a1, a2, a3 ∈ {0, 1}.

We comment on the conditions. Conditions (C.0)-(C.1) are standard mo-
ment and mixing conditions on the spatial process Z(·) (cf. Lahiri [17]),
which entail that Z(·) must be weakly dependent and are used to ensure
finiteness of the variance of the periodogram values (which are themselves
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quadratic functions of Z(s)), among other things. See Doukhan [7] for pro-
cess examples fulfilling such conditions, including Gaussian, linear and Markov
random fields. Also, note that the function γ2(·) in (C.0) is allowed to grow to
infinity to ensure validity of the results for bonafide strongly mixing random
fields in d ≥ 2 (cf. Bradley [3, 4]). Condition (C.2) specifies the requirements
on the spatial design density f . Part (i) of (C.2) is a smoothness condition
on f while part (ii) requires the characteristic functions corresponding to the
probability densities f(·) and f2(·)/

∫
f2 to decay at the rate O(‖ω‖−a0) as

‖ω‖ → ∞. Condition (C.2) is satisfied (with a0 = d in (ii)) when f(·) is the
uniform distribution on a rectangle of the form (−s1, t1) × . . . × (−sd, td)
for some 0 < si, ti < 1/2 for all i = 1, . . . , d. However, there exist many
non-uniform densities that also satisfy (C.2) with a0 = d.

Condition (C.3) specifies the regularity conditions on the spectral estimat-
ing function Gθ0 . In addition to the spectral moment condition (3.1), parts
(i) and (ii) of (C.3) provide sufficient conditions that make the errors of Rie-
mann sum approximations to the variance integral

∫
Gθ0(ω)Gθ0(ω)′φ(ω)dω

asymptotically negligible. Conditions (C.3) (iii) and (C.3)(iv) provide alter-
native forms of a sufficient condition that guarantees nonsingularity of the
p× p matrix Σn through a subsequence under PID and for the full sequence
under (a subcase of) the MID asymptotic structure, respectively. Without
these, the degrees of freedom of the limiting chi-squared distribution of the
scaled log-SFDEL ratio statistic can be smaller than p. It is easy to verify
that the examples presented in Section 3 satisfy Condition (C.3), under mild
conditions on the hi-s in Example 1, on the ti-s in Example 2, and on the
hi-s and the parametric variogram model 2γ(·; θ) in Example 3.

Next consider Condition (C.4). The first part of (C.4) states the require-
ments on the SFDEL tuning parameters κ and η that must be chosen by
the user in practice. Note that κ and η determine a Riemann-sum approx-
imation to the spectral moment condition (3.1) over the discrete grid (3.2)
where κ determines the grid spacing while η determines the range of the
approximating set [−C∗λη−κn , C∗λη−κn ]d. Thus, one must choose these pa-
rameters so that the grid spacing is small and the integral of Gθ0φ out-
side [−C∗λη−κn , C∗λη−κn ]d is small. On the other end, κ needs to satisfy
the requirement 0 < κ < 1 to ensure that the neighboring frequencies
in N are ‘asymptotically distant’. Section 6 gives some specific examples
of the choices of κ and η in finite sample applications. As for Condition
(C.4)(ii), note that the ‘asymptotically distant’ property of the frequencies
in N renders the summands in

∑N
k=1Gθ0(ωkn)I∗n(ωkn) approximately

independent and hence, under suitable normalization, the sum must have a
Gaussian limit. One set of sufficient conditions for the weak convergence of
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Σ
−1/2
n

∑N
k=1Gθ0(ωkn)[I∗n(ωkn) − EI∗n(ωkn)] to a Gaussian limit is given by

a CLT result in Bandyopadhyay, Lahiri and Nordman [2] (hereafter referred
to as [BLN]). Alternative sufficient conditions for the CLT in (C.4)(ii) can
also be derived requiring that Z(·) is a d-dimensional linear process, but we
do not make any such structural assumptions on Z(·) here.

Finally consider Condition (C.5)’ which will be used only in the MID case
(cf. Theorems 5.2 and 5.3). This condition can be verified easily when the
Fourier transform ξj,k (say) of the function Gj,θ0Gk,θ0 decays quickly, for all
1 ≤ j, k ≤ p. In contrast, if the functions ξj,k do not decay fast enough, one
can verify (C.5)’ using Lemma 7.4 and the arguments in the proof of the
result below, which shows that Condition (C.5)’ holds for Examples 1-3.

Proposition 4.1. For Gθ(·) of Examples 1,2,3, Condition (C.5)’ holds.

The next section states the main results of the paper under PID and MID.

5. Asymptotic Distribution of the spatial FDEL ratio statistic.

5.1. Results under the PID asymptotic structure. Let PX denote the joint
distribution of the random vectors X1,X2, . . ., generating the locations of
the data sites (cf. Section 2.1). The following result gives the asymptotic
distribution of the SFDEL ratio statistic under PID:

Theorem 5.1. Suppose that Conditions (C.0)-(C.4) and that n/λdn →
c∗ ∈ (0,∞). Then, − logRn(θ0)

d−→ χ2
p, a.s. (PX) .

Theorem 5.1 shows that under Conditions (C.0)-(C.4) (and without re-
quiring (C.5)’), the SFDEL log-likelihood ratio statistic has an asymptotic
chi-squared distribution, for almost all realizations of the sampling design
vectors {Xi}. Note that the scaling for the log SFDEL ratio statistic is
non-standard - namely, the chi-squared limit distribution is attained by
− logRn(θ0), but not by the more familiar form −2 logRn(θ0) as in Wilks’
theorem and as in the time series FDEL case (cf. Nordman and Lahiri [29]).
This is a consequence of the non-standard behavior of the periodogram for
irregularly spaced spatial data (cf. Section 3). However, as the limit dis-
tribution of the SFDEL ratio statistic does not depend on any unknown
population quantities, it can be used to construct valid large sample tests
and confidence regions for the spectral parameter θ. Specifically, a valid large
sample level α ∈ (0, 1/2) SFDEL test for testing

(5.1) H0 : θ = θ0 vs H1 : θ 6= θ0
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will reject H0 if − logRn(θ0) > χ2
1−α,p, where χ2

1−α,p denotes the (1 − α)

quantile of the χ2
p-distribution. For SFDEL based confidence regions for θ,

a similar distribution free calibration holds (cf. Section 5.3).

Remark 5.1: Note that the distribution of Rn(θ0) depends on two sources
of randomness, namely, the spatial process {Z(s) : s ∈ Rd} and the vectors
{Xi}i≥1. Let L(T |X ) denote the conditional distribution of a random vari-
able (based on both {Z(·)} and {Xi}), given X ≡ σ〈X1,X2, . . .〉 and let dL
denote the Levy metric on the set of probability distributions on R. Then,
a more precise statement of the Theorem 5.1 result, under the conditions
given there, is:

dL

(
L
(
− logRn(θ0)

∣∣∣X), χ2
p

)
= o(1), a.s.(PX).

A similar interpretation applies to the other theorems presented in the paper.

5.2. Results under the MID asymptotic structure. The limit behavior of
the spatial FDEL ratio statistic under the MID asymptotic structure shows a
more complex pattern and it depends on the strength of the infill component.
Note that cn = n/λdn denotes the relative growth rate of the sample size and
the volume of the sampling region of Dn and hence, cn →∞ as n→∞ under
MID, with a higher the value of cn indicating a higher rate of infilling. The
following result gives the asymptotic behavior of the SFDEL ratio statistic
under different growth rates of cn.

Theorem 5.2. Suppose that Conditions (C.0)-(C.4) and (C.5)’ hold
(where (C.3) may be replaced by (C.3)(i),(ii),(iv) for part (b)).

(a) (MID with a slow rate of infilling). If 1� c2n � Nλ−κdn , then

− logRn(θ0)
d−→ χ2

p, a.s. (PX).

(b) (MID with a fast rate of infilling). If c2n � Nλ−κdn , then

−2 logRn(θ0)
d−→ χ2

p, a.s. (PX).

Theorem 5.2 shows that the asymptotic distribution of − logRn(θ0) can
be different depending on the rate at which the infilling factor cn goes
to infinity. When the rate of decay in c2n is slower than the critical rate

Nλ−κdn ∼ λ(η−κ)dn , corresponding to the asymptotic volume of the frequency
grid (i.e., determined by the number N ∝ λdηn of frequency points on a reg-
ular grid and the Rd-volume λ−dκn between grid points), the negative log
SFDEL ratio has the same limit distribution as in the PID case. However,
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when the factor c2n grows at a faster rate than λ
(η−κ)d
n , the more famil-

iar version of scaling −2 is appropriate for the log SFDEL ratio. From the
proof of Theorem 5.2, it also follows that in the boundary case, i.e., when

c2n ∼ λ
(η−κ)d
n , the limit distribution of − logRn(θ0) is determined by that

of a quadratic form in independent Gaussian random variables and is not
distribution free. As a result, this case is not of much interest from an ap-
plications point of view. However, as cn = n/λdn is a known factor, one can
always choose the SFDEL tuning parameters κ, η to avoid the boundary case.

Remark 5.2: Theorem 5.2 shows that when the rate of infilling cn does
not grow too fast, the presence of the infill component does not have an
impact on the asymptotic distribution of the log SFDEL ratio statistic.
Thus, the limit behavior under the PID asymptotic structure has a sort
of robustness that extends beyond its realm and covers parts of the MID
asymptotic structure in the frequency domain. This is very much different
from the known results on the limit distributions of the sample mean and of
asymptotically linear statistics in the spatial domain where all subcases of
the MID asymptotic structure lead to the same limit distribution and where
the MID limit is different from the limit distribution in the PID case (cf.
Lahiri [17], Lahiri and Mukherjee [20]).

5.3. A unified scaled spatial FDEL method. Results of Sections 5.1 and
5.2 show that in the spatial case, the standard calibration of the EL ratio
statistic may be incorrect depending on the relative rate of infilling. Al-
though non-standard, −2 logRn(θ0) has the same 2χ2

p distribution under

the PID spatial asymptotic structure for all values of c∗ = limn→∞ n/λ
d
n. In

contrast, the limit distribution of −2 logRn(θ0) can change from the non-
standard 2χ2

p to the standard χ2
p under the MID asymptotic structure when

the rate of infilling is faster. While this gives rise to a clear dichotomy in
the limit, the choice of the correct scaling constant and, hence, the correct
calibration may not be obvious in a finite sample application. To deal with
this problem, we develop a data based scaling factor that adjusts itself to
the relative rates of infilling and delivers a unified χ2

p limit law under the
PID as well as under the different subcases of the MID. Specifically, define
the modified FDEL statistic

−2an(θ) logRn(θ)

where

(5.2) an(θ) =

∑N
k=1 ‖Gθ(ωkn)‖2Ĩ2n(ωkn)∑N
k=1 ‖Gθ(ωkn)‖2I2n(ωkn)

.
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Note that for any θ, the factor an(θ) can be computed using the data
{Z(s1), . . . , Z(sn)}, where the numerator of an(θ) is computed using the
bias-corrected periodogram while the denominator is based on the raw pe-
riodogram. For the testing problem H0 : θ = θ0 against H1 : θ 6= θ0, this
requires computing the factor an(·) once. However, for constructing con-
fidence intervals, an(θ) must be computed repeatedly and, therefore, this
version of the SFDEL is somewhat more computationally intensive.

To gain some insight into the choice of an(θ), note that it is based on the
ratio of the sums of the periodogram and its bias-corrected version that are
weighted by the squared norms of the function Gθ(·) at the respective fre-
quencies ωkn. As explained before, the bias correction of the periodogram of
irregularly spaced spatial data is needed to render the EL-moment condition
in (3.3) unbiased. However, this leads to a “mismatch” between the variance
of the sum

∑N
k=1Gθ(ωkn)Ĩn(ωkn) and the automatic scale adjustment fac-

tor provided by the EL method. The numerator and the denominator of
an(θ) capture the effects of this mismatch under different rates of infilling
and hence, an(·) provides the “correct” scaling constant under the different
asymptotic regimes considered here.

We have the following result on the modified SFDEL ratio statistic.

Theorem 5.3. Suppose that the conditions of one of Theorems 5.1-5.2
hold. Then, under θ = θ0,

(5.3) − 2an(θ0) logRn(θ0)
d−→ χ2

p, a.s. (PX).

Theorem 5.3 shows that the modified SFDEL method can be calibrated
using the quantiles of the chi-squared distribution with p degrees of freedom
for all of the three asymptotic regimes covered by Theorems 5.1-5.2. Thus,
the empirically scaled log-SFDEL ratio statistic provides a unified way of
testing and constructing confidence sets under different asymptotic regimes.
Specifically, for any α ∈ (0, 1/2),

Cα ≡ {θ ∈ Θ : −2an(θ) logRn(θ) ≤ χ2
1−α,p}

gives a confidence region for the unknown parameter θ that attains the
nominal confidence level (1−α) asymptotically. The main advantage of the
SFDEL method here is that we do not need to find a studentizing covari-
ance matrix estimator explicitly, which by itself is a non-trivial task, as this
would require explicit estimation of the spectral density φ(·) and the spatial
sampling density f(·) under different asymptotic regimes.

6. Numerical Results.
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6.1. Results from a simulation study. Here we examine the coverage ac-
curacy of the SFDEL method in finite samples, applied to a problem of
variogram model fitting described in Section 3.2. We consider an exponen-
tial variogram model form (up to variance normalization)

2γ(h; θ1, θ2) = 1− exp[−θ1|h1| − θ2|h2|],

with parameters θ1, θ2 > 0 where h = (h1, h2)
′ ∈ R2. Over several sam-

pling region sizes Dn = λn[−1/2, 1/2)2, λn = 12, 24, 48, and sample sizes
n = 100, 400, 900, 1400, we generated iid sampling sites s1, . . . , sn ∈ Dn
and real-valued stationary Gaussian responses Z(·) following the exponen-
tial variogram form with θ1 = θ2 = 1 and EZ(s) = 0, Var[Z(s)] = 1 (the
simulation results are invariant here to values for the mean and variance). In
the spatial sampling design (cf. Sec 2.1), two distributions f for sites were
considered, one being uniform over D0 and the other being a mixture of
two bivariate normal distributions 0.5N((0, 0)′, I2) + 0.5N((1/4, 1/4)′, 2I2),
truncated outside D0, where I2 denotes a 2× 2 identity matrix.

In implementing the modified SFDEL method to compute 90% confi-
dence regions for θ = (θ1, θ2), we used the estimating functions in (3.6) over
m = 2 sets of lags h1,h2 ∈ R2 and evaluated the (sample mean-centered)
periodogram at scaled frequencies Nn = {λ−κn j : j ∈ Z2 ∩ [−C∗λn, C∗λn]2};
we varied values C∗ = 1, 2, 4 (with η = 1 held fixed) and κ = 0.05, 0.1, 0.2
along with considering different combinations of lags h1,h2. Recall that C∗

and κ respectively control the number and spacing of periodogram ordinates,
where choices of κ here roughly induce spacings between frequencies of 1,
0.75, or 0.5 in horizontal/vertical directions; in our findings, these spacings
were adequate whereas tighter spacings (e.g., κ ≥ 0.4) tended to perform
less well by inducing stronger dependence between periodogram ordinates.

The coverage results (based on 1000 simulation runs) are listed in Tables
1-2 for the lag h1 = (1, 1)′,h2 = (1,−1)′ for the uniform and non-uniform
spatial sites, respectively, with the results for the other sets of lags reported
in the [Supplement]. Except for the occasions with the smallest lag combina-
tion (h1 = (1, 1)′,h2 = (1,−1)′) and the smallest sampling region λn = 12
with large n, the coverages tended to agree quite well with the nominal level.
Further, the coverage levels were largely insensitive to the number and spac-
ing of periodogram ordinates for various sample and region sizes. Results for
both stochastic sampling designs were also qualitatively similar.

6.2. An illustrative data example. As a brief demonstration of the SFDEL
method, we consider a coal seam dataset based on a SAS example ([35],
ch. 70). Figure 1 shows locations of 105 sampling sites and the corresponding
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Table 1
Coverage percentage of 90% SFDEL regions for variogram model parameters θ (uniform

design).

h1 = (1, 1)′,h2 = (1,−1)′

λn = 12 λn = 24 λn = 48
C∗ κ 100 400 900 1400 100 400 900 1400 100 400 900 1400

1 0.05 86.4 85.6 82.0 80.3 88.9 87.8 87.8 89.9 89.3 89.4 89.7 87.9
1 0.1 87.1 85.3 78.6 75.9 89.0 90.2 89.6 90.4 89.0 91.4 91.5 90.0
1 0.2 86.5 85.1 81.1 76.4 90.0 88.7 90.1 89.7 87.6 87.9 87.9 88.9

2 0.05 88.1 87.8 86.1 85.9 89.0 88.6 89.7 87.9 89.2 88.9 90.5 89.7
2 0.1 86.6 86.8 86.2 84.2 89.2 88.4 91.1 89.9 90.6 90.0 90.0 91.4
2 0.2 89.6 88.8 84.6 83.8 88.9 89.9 89.9 89.2 89.9 89.3 88.1 89.4

4 0.05 89.0 87.8 89.6 88.1 89.3 89.0 90.1 90.2 92.9 88.2 90.6 89.9
4 0.1 86.3 88.6 88.7 86.4 90.3 89.4 90.3 89.2 92.0 87.8 90.8 89.1
4 0.2 88.4 89.0 87.4 87.9 88.7 88.9 90.0 89.6 92.8 88.6 88.5 88.8

Table 2
Coverage percentage of 90% SFDEL regions for variogram model parameters θ

(non-uniform design)

h1 = (1, 1)′,h2 = (1,−1)′

λn = 12 λn = 24 λn = 48
C∗ κ 100 400 900 1400 100 400 900 1400 100 400 900 1400

1 0.05 88.3 86.8 85.5 79.6 89.4 88.9 86.4 90.1 90.2 89.2 89.6 90.0
1 0.10 85.7 83.5 80.3 78.7 88.8 87.7 89.6 92.0 87.0 90.5 89.5 89.3
1 0.20 87.9 86.0 82.4 79.1 89.6 90.0 90.7 90.0 87.4 88.2 88.8 88.7

2 0.05 89.4 89.3 88.0 83.8 90.1 88.6 89.7 88.9 89.6 90.7 89.5 91.2
2 0.10 86.2 87.7 84.3 85.9 89.0 90.7 90.0 88.4 90.1 91.5 90.1 90.0
2 0.20 88.7 89.5 88.5 85.6 90.7 90.4 89.7 88.5 89.7 88.5 90.3 89.8

4 0.05 89.5 89.5 88.3 88.0 87.7 90.0 88.6 90.7 91.8 89.8 89.2 90.9
4 0.10 87.0 88.8 87.4 86.2 89.0 89.9 87.9 89.4 91.7 87.9 88.2 89.9
4 0.20 90.6 89.1 89.1 86.3 89.5 89.0 87.9 89.4 91.5 90.2 89.3 90.1

Fig 1. Coal seam data: sampling locations, distribution of thickness, empirical semivari-
ogram
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distribution of coal seam thickness. Coal seam measurements often exhibit
spatial smoothness (Journel and Huijbregts [15], p. 165), as also indicated
in the empirical semivariogram in Figure 1 (found by binning distances
into 10 bins up to half the maximum distance between points and plot-
ting Matheron’s average over each bin against the bin midpoint). Following
the SAS analysis, this suggests a Gaussian variogram model 2γ(h; θ1, θ2) =
2θ1[1−exp(−‖h‖2/θ22)], h ∈ R2, with scale θ1 > 0 and range θ2 > 0 parame-
ters, though the present data are synthetic with a value θ2 = 1 as explained
below.

Note that the spatial locations are not clearly uniform nor is the marginal
distribution apparently normal. To fit the variogram model in a way that
allows nonparametric confidence intervals (CIs) to access the precision of
the estimated parameters, without making assumptions about the joint dis-
tribution of the data or the distribution of spatial locations, one can apply
the SFDEL method using estimating functions as in Example 3 motivated
by least squares estimation. Alternatively, one can apply a kernel bandwidth
estimator of the varigoram for which large sample distributional results are
recently known (Garcia-Soidan [11], Maity and Sherman [22]).

We focus on the range parameter θ2. Using a lag set h1 = (1/4, 1/4)′,
h2 = (1, 1)′, h3 = (2, 2)′ in SFDEL, motivated by empirical lags in Fig-
ure 1, the maximized SFDEL function produces a point estimate θ̂2 = 1.123
(×10,000 ft) with a 90% SFDEL CI for θ2 as (0.896, 1.571). This arises from
a frequency grid {λ−κn j : [−C∗λn, C∗λn]2 ∩ Z2}, C∗ = 2, κ = 0.2 based
on λn = 10 for sampling region in Figure 1. With a larger frequency grid
C∗ = 4, κ = 0.2, the 90% SFDEL CI is similar (0.887, 1.378) with a point es-
timate 1.071, and increasing the grid spacing κ = 0.1 produces similar range
estimates (1.107 and 1.101 for C∗ = 2, 4) and intervals. In contrast, using the
lags above and the Nadaraya-Watson kernel estimator of the semivariogram
γ̂(h) (based on the Epanechnikov kernel, cf. Garcia-Soidan [11]), the range
parameter estimates are 1.505, 1.230, 1.335 for bandwidths h = 0.5, 1, 1.5,
where h = 0.5 arises from MSE optimal order considerations. This approach
can also produce large-sample nonparametric CIs based on normal limits for
λn[γ̂(h)− γ(h)], having a covariance matrix C ·V , C = [

∫
f2]−2

∫
f4, involv-

ing the unknown density f of locations {si/λn}105i=1 on [0, 1]2. For bandwidths
h = 0.5, 1, 1.5, the 90% CIs for θ2 are given by (1.203, 1.743), (0.972, 1.512),
(1.038, 1.564) based on Ĉ = 1.23 from bivariate kernel density estimation
(cf. Venables and Ripley [37]) and simplifying the matrix V by assuming
the process is Gaussian (cf. Garcia-Soidan [11], p. 490-491). Unlike CIs from
kernel estimation, the SFDEL CIs require no variance or density approxi-
mation steps, tend to be less sensitive to tuning parameters, and all contain
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the true value θ2 = 1 here.
To provide some assessment of the CI methods, we conducted a small

simulation study generating marginally standard normal variates {Y (si)}105i=1

with correlation corr[Y (s), Y (s + h)] = exp(−‖h‖2) at the locations {si}105i=1

in Figure 1 and defining observations {Z(si) =
√
θ1/2[Y 2(si)−1]+40.23}105i=1

from a spatial process having a Gaussian variogram as above with scale
θ1 = 7.5 and range θ2 = 1; this data-generation approximately matches
features in the original SAS coal seam data and also produced the data
example above. Based on 1,000 simulations, 90% CIs for the range parameter
θ2 from the SFDEL method had coverages 90.5, 87.4, 93.3 for C∗ = 2 and
89.3, 88.7, 86.4 for C∗ = 4, over grid spacings κ = 0.05, 0.1, 0.2. In contrast,
90% CIs for θ2 from the kernel estimation approach had actual coverages
68.4, 74.4, 52.7 for bandwidths h = 0.5, 1, 1.5.

7. Proofs of the results.

7.1. Notation and lemmas. Define the bias corrected periodogram Ĩn(ω) =
In(ω)−n−1λdnσ̂n(0) and its (unobservable) variant I∗n(ω) = In(ω)−n−1λdnσ(0).
Recall that An(ω) = c−1n σ(0) +Kφ(ω), ω ∈ Rd, where K = (2π)d

∫
f2. For

notational simplicity, for a random quantity T depending on both {Z(s) :
s ∈ Rd} and {X1,X2, . . .}, ET will denote the conditional expectation of T
given X ≡ {X1,X2, . . .} and likewise P will denote conditional probability.
Thus, in the following, P (−2 logRn(θ0) ≤ t) in fact refers to

P
(
− 2 logRn(θ0) ≤ t

∣∣∣X), t > 0.

Also, write PX and EX to denote the probability and the expectation under
the joint distribution of X1,X2, . . .. Further, let C or C(·) denote generic
constants that depend on their arguments (if any), but do not depend on n
or the {Xi}.

We now provide some lemmas that will be used for proving the main re-
sults of the paper. Proofs of the lemmas and Proposition 4.1 are relegated
to the [Supplement] to save space. For continuity, [Supplement] begins with
three technical lemmas (Lemmas 7.1-7.3), providing some general cumu-
lant and integral inequalities as well as the bias and the variance of the
periodogram In(·) that are used to establish Lemmas 7.4-7.7 below; these
results may also be of independent interest. As presented next, Lemmas 7.4-
7.7 deal with various properties and sums of the periodogram that we will
need to analyze the asymptotic behavior of the SFDEL ratio statistic under
different asymptotic structures and establish the main results in Section 7.2.
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Lemma 7.4. Under the Conditions (C.0)-(C.3) and (C.5)’

E

[
N∑
k=1

Gθ0(ωkn)Gθ0(ωkn)′I2n(ωkn)

]

= 2

N∑
k=1

Gθ0(ωkn)Gθ0(ωkn)′A2
n(ωkn) + o(b2n) a.s.(PX).

Lemma 7.5. Under the Conditions (C.0)-(C.3) and (C.5)’,

N∑
i=1

Gθ0(ωin)Gθ0(ωin)
′
[
Ĩ2n(ωin)−

(
A2
n(ωin)+K2φ2(ωin)

)]
= op(b

2
n), a.s.(PX).

Lemma 7.6. Under the Conditions (C.0)-(C.3) and (C.5)’, for any ε >
0, P (max1≤k≤N ‖Gθ0(ωkn)In(ωkn)‖ > εbn) = o(1), a.s. (PX).

Lemma 7.7. Let cho(B) denote the interior of the convex hull of a set
B ⊂ Rp. Under the Conditions (C.0)-(C.3) and (C.5)’, it holds that, as

n→∞, P
(

0 ∈ cho{Gθ0(ωkn)Ĩn(ωkn)}Nk=1

)
→ 1 a.s. (PX).

7.2. Proofs of the main results. We now present the proofs of the re-
sults from Section 5. In the following, references to the equations from the
[Supplement] are given as (S.∗).

Proof of Theorem 5.1. By Lemma 7.7, Rn(θ0) exists and is positive on a
set with probability tending to one, a.s. (PX). When Rn(θ0) > 0 holds, by
a general and standard EL result based on Lagrange multipliers (cf. Owen
[31], p. 100), one can express Rn(θ0) as

(7.1) Rn(θ0) =

N∏
k=1

(1 + γk)
−1

where βθ0 ≡ βθ0,n satisfies Fn(θ0, βθ0) = 0 for

Fn(θ, β) ≡ N−1
N∑
k=1

Gθ(ωkn)Ĩn(ωkn)

1 + β′Gθ(ωkn)Ĩn(ωkn)
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and where γk ≡ γk,n = β
′
θ0
Gθ0(ωkn)Ĩn(ωkn) satisfies |γk| < 1 for all 1 ≤

k ≤ N . To prove the theorem, it is enough to show that given any sub-
sequence {ni}, there exists a further subsequence {nk} of {ni} such that

− logRnk(θ0)
d→ χ2

p. We use this line of argument because, as the proof in-
dicates, the asymptotic expansion of − logRnk(θ0) involves mean-like quan-
tities (e.g., term Jk in the following) which may have differing (normal) limit
distributions along different subsequences of {nk}; nevertheless, the log-ratio
statistic − logRn(θ0) is shown to have a single, well-defined chi-square limit.

Note first that, under the PID structure here, it follows immediately from
(C.3) (cf. (S.10)) that
(7.2)

b2n ∼ Nc−2∗ and
∥∥∥Σn − 2c−2∗ [σ(0)]2

N∑
k=1

Gθ0(ωkn)Gθ0(ωkn)′
∥∥∥ = o(N)

(which is applied to show (7.4) from (7.3) next). Fix a subsequence {ni}.
Then by (C.3)(iii) and the fact that ‖Gθ0(ω)‖ ≤ C for all ω ∈ Rd, it follows
that there exist a subsequence {nk} of {ni} and a nonsingular matrix Γ∗

(possibly depending on {nk}) such that

(7.3) N−1
N∑
j=1

Gθ0(ωjn)Gθ0(ωjn)′ → Γ∗ through {nk}.

For simplicity, replace the subscript nk by k and set Nk ≡ Nnk , ωj ≡ ωj,nk ,

γj ≡ γj,nk and βθ0 ≡ βθ0,nk . Also, letWk = N−1k
∑Nk

j=1Gθ0(ωj)Gθ0(ωj)
′
Ĩ2k(ωj)

and Jk = N−1k
∑Nk

j=1Gθ0(ωkn)Ĩk(ωj). Then by (7.2), (7.3), Condition (C.3)
and Lemmas 7.5-7.6, we have, a.s. (PX),

(7.4) |Jk| = Op(N
−1/2
k ) and

∥∥Wk − (2Nk)
−1Σk

∥∥ = op(1)

as k → ∞. Since N−1k Σk → 2[σ(0)]2c−2∗ Γ∗, Wk is nonsingular whenever
‖Wk − [σ(0)]2c−2∗ Γ∗‖ is sufficiently small.

Claim: ‖βθ0‖ = Op(N
−1/2
k ), a.s. (PX).

Proof: Write βθ0 = t0u0 where ‖u0‖ = 1 and t0 = ‖βθ0‖. Then,

0 = ‖Fk(θ0, βθ0)‖ ≥
∣∣∣u′0Fk(θ0, tθ0)

∣∣∣
= N−1k

∣∣∣∣∣∣u′0
 Nk∑
j=1

Gθ0(ωj)Ĩk(ωj)− t0
Nk∑
j=1

Gθ0(ωj)Ĩk(ωj)u
′
0Gθ0(ωj)Ĩn(ωj)

1 + t0u
′
0Gθ0(ωj)Ĩn(ωj)

∣∣∣∣∣∣
≥ t0u

′
0Wku0

1 + t0Yk
−

p∑
j=1

∣∣∣e′jJk∣∣∣ ,
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where Yk = max
1≤j≤Nk

‖Gθ0(ωj)‖ |Ĩk(ωj)| and e1, . . . , er denote the standard

basis of Rr, with ei ∈ Rr having a 1 in the ith position and 0 elsewhere.

By Lemma 7.6, Yk = op(N
1/2
k ). Also, using (7.4), one can conclude that

u
′
0Wku0 ≥ σ∗0 + op(1) and hence, (1 + t0Yk)

−1t0 = Op(N
−1/2
k ), a.s. (PX),

where σ∗0 > 0 is the smallest eigenvalue of [σ(0)]2c−2∗ Γ∗. Hence, it follows

that t0 = ‖βθ0‖ = Op(N
−1/2
k ), proving the claim. �

By the claim and Lemma 7.6,

max
1≤j≤Nk

|γj | ≤ ‖βθ0‖Yk = Op(N
−1/2
k )op(N

1/2
k ) = op(1), a.s.(PX).(7.5)

Next we obtain a stochastic approximation to βθ0 . Using Fk(θ0, βθ0) = 0,
note that

0 = N−1k

Nk∑
j=1

Gθ0(ωj)Ĩk(ωj)

1 + β
′
θ0
Gθ0(ωj)Ĩn(ωj)

= N−1k

Nk∑
j=1

Gθ0(ωj)Ĩn(ωj)

[
1− γj +

γ2j
1 + γj

]

= Jk −Wkβθ0 +N−1k

Nk∑
j=1

Gθ0(ωj)Ĩk(ωj)γ
2
j

1 + γj
.

Therefore, we have the representation:

(7.6) βθ0 = (Wk)
−1Jk + ηk,

where, using Condition (C.3), Lemma 7.5, the Claim, and (7.5), ‖ηk‖ ≤
Yk ‖βθ0‖

2 ‖Wk‖−1 {N−1k
∑Nk

j=1 ‖Gθ0(ωj)‖2 Ĩ2k(ωj)}{max1≤j≤Nk(1−|γj |)−1} =

op(N
1/2
k )Op(N

−1
k )Op(1)Op(1)Op(1) = op(N

−1/2
k ), a.s.(PX). For ‖βθ0‖Yk <

1, applying a Taylor series expansion, we have

log (1 + γj) = γj − γ2j /2 + ∆j ,

where |∆j | ≤ ‖βθ0‖
3 Yk ‖Gθ0(ωj)‖2 Ĩ2k(ωj)(1−‖βθ0‖Yk)−3 for all 1 ≤ j ≤ Nk.

Also, by Lemmas 7.4-7.5, (C.3) and (7.4), NkJ
′
k(Wk)

−1Jk
d−→ 2χ2

p and

Nk∑
j=1

|∆j | ≤ Nk ‖βθ0‖
3 Yk(1− ‖βθ0‖Yk)−3

N−1k
Nk∑
j=1

‖Gθ0(ωj)‖2 Ĩ2k(ωj)


= NkOp(N

−3/2
k )op(N

1/2
k )Op(1)Op(1) = op(1),
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a.s. (PX). Hence, it follows that

− logRnk(θ0) ≡ − logRk(θ0) =

Nk∑
j=1

log (1 + γj)

=

 Nk∑
j=1

γj − 2−1
Nk∑
j=1

γ2j

+

Nk∑
j=1

∆j

=
[
β′θ0 [NkJk]− 2−1Nkβ

′
θ0Wkβθ0

]
+

Nk∑
j=1

∆j

= 2−1NkJ
′
k(Wk)

−1Jk + op(1)
d−→ χ2

p.

This completes the proof of Theorem 5.1. �

Proof of Theorem 5.2. By conditions on cn, N and λn in the MID case
of part (a),

b2n ∼ Nc−2n and
∥∥∥Σn − 2c−2n [σ(0)]2

N∑
k=1

Gθ0(ωkn)Gθ0(ωkn)′
∥∥∥ = o(b2n),(7.7)

where c−1n = o(1). Thus, bn has a slower growth rate in this case compared
to the PID case. As in the proof of Theorem 5.1, it is enough to show that

− logRnk(θ0)
d−→ χ2

p through some subsequence {nk} of a given subsequence
{ni}. Indeed, the subsequence {nk} is extracted using (C.3)(iii) as before so
that (7.3) holds. Let Yk, βθ0 and γj be as defined in the proof of Theorem 5.1,
and here we continue to use the convention that the subscript nk is replaced
by k, as before. Next redefine Jk and Wk as Jk = b−2k

∑Nk
j=1Gθ0(ωkn)Ĩk(ωj)

and Wk = b−2k
∑Nk

j=1Gθ0(ωj)Gθ0(ωj)
′
Ĩ2k(ωj) where, following the conven-

tion, we write bk = bnk . Then, by (7.3), (7.7), Lemma 7.5, and (C.4),

‖Wk − [σ(0)]2Γ∗‖ = o(1) and bkJk
d−→ N

(
0, 2[σ(0)]2Γ∗

)
.

Further, retracing the proof of Theorem 5.1 and using Lemmas 7.5-7.7, one
can conclude that a.s. (PX), ‖βθ0‖ = Op(b

−1
k ) (cf. the Claim), max{|γj | :

1 ≤ j ≤ Nk} = op(1) (cf. (7.5)) and the representation (7.6) holds with
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ηk = op(b
−1
k ). Hence, it follows that

− logRk(θ0) =

 Nk∑
j=1

γj − 2−1
Nk∑
j=1

γ2j

+

Nk∑
j=1

∆j

=
[
β′θ0 [b2kJk]− 2−1b2kβ

′
θ0Wkβθ0

]
+

Nk∑
j=1

∆j

= 2−1b2kJ
′
k(Wk)

−1Jk + op(1)
d−→ χ2

p.

This completes the proof of Theorem 5.2(a).
Next consider part (b). Note that in this MID case, Nc−2n � λκdn and

hence, b2n ∼ λκdn . Also, using the boundedness of ‖Gθ0(·)‖ over Rd and Con-
ditions (C.3)(i), (ii), (iv) and the DCT, one gets

‖Σn − 2λκdn Γ‖ = o(λκdn )

where Γ ≡
∫
Gθ0(ω)Gθ0(ω)′K2φ2(ω)dω is nonsingular. Now retracing the

proofs of Theorems 5.1 and 5.2(a) (with {nk} replaced by the full sequence
{n}), one can show that −2 logRn(θ0) = b2nJ

′
0n(W0n)−1J0n + op(1), where

J0n = b−2n
∑N

j=1Gθ0(ωjn)Ĩn(ωj) andW0n = b−2n
∑N

j=1Gθ0(ωjn)Gθ0(ωjn)
′
Ĩ2n(ωjn).

Note that by Lemma 7.5 and the fact that b2n ∼ λκdn , we have

‖Wn − b−2n Σn‖ = o(1)

which is different from the previous two cases covered by Theorems 5.1 and
5.2(a) (where ‖Wn−2−1(b−2n Σn)‖ = o(1)). In view of (C.4), this implies that

b2nJ
′
0n(W0n)−1J0n

d−→ χ2
p, proving part (b).

Remark 7.1: From the proof of Theorems 5.1-5.2, it follows that the dif-
ferent scalings in the two cases are required by the dominant term in the
asymptotic variance of the sum

∑N
k=1Gθ0(ωkn)I∗n(ωkn) and the automatic

variance stabilization factor, both of which arise from the inner mechanics
of the SFDEL. Under PID and under “slow” MID, the leading term is given
by Nc−1n σ(0), which is of a larger order of magnitude than λκdn . When the
infilling rate is high, i.e., Nc−2n � λκdn , the other term involving the spectral
density of the Z(·)-process dominates (as in the case of regularly spaced
time series FDEL) and the standard scaling by −2 is appropriate.



SPATIAL EMPIRICAL LIKELIHOOD 27

Proof of Theorem 5.3. By Lemma 7.5 and the fact that σ̂n(0)− σ(0) =

Op(λ
−d/2
n ) (cf. Lahiri [17]), under the conditions of Theorem 5.2(b),

an(θ0) =
b−2n

∑N
j=1 ‖Gθ0(ωjn)‖2Ĩ2n(ωjn)

b−2n
∑N

j=1 ‖Gθ0(ωjn)‖2I2n(ωjn)

=
b−2n

∑N
j=1 ‖Gθ0(ωjn)‖2[2K2φ2(ωjn)] + op(1)

b−2n
∑N

j=1 ‖Gθ0(ωjn)‖2[2K2φ2(ωjn)] + op(1)

= 1 + op(1)

while under the conditions of Theorems 5.1 and 5.2,

ank(θ0) =
b−2k

∑Nk
j=1 ‖Gθ0(ωk)‖2[c−2nk [σ(0)]2] + op(1)

b−2k
∑Nk

j=1 ‖Gθ0(ωk)‖2[2c−2nk [σ(0)]2] + op(1)

= 2−1(1 + op(1)).

Now combining this with the proofs of Theorems 5.1-5.2, one can complete
the proof of Theorem 5.3.
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[Supplement]: Supplement to “A frequency domain empirical
likelihood method for irregularly spaced spatial data”
(doi: To BE COMPLETED BY THE TYPESETTER; .pdf). Details of
proofs and additional simulation results.
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