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Abstract

This note highlights some unusual and unexpected behavior in point estimation

using empirical likelihood (EL). In particular, frequency domain formulations of

EL, based on the periodogram and estimating functions, have been proposed in

the literature for time and spatial processes. However, in contrast to the time

series case and most applications of EL, the maximum EL parameter estimator

exhibits surprisingly non-standard asymptotic properties for irregularly located

spatial data. In fact, a consistent normal limit cannot be guaranteed, as is

typical for EL. Despite this, log-ratio EL statistics maintain standard chi-square

limits with such spatial data.
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1. Introduction

Empirical likelihood (EL), introduced by Owen (1990), formulates a likeli-

hood by probability profiling data in a manner that does not require a joint
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distribution. The resulting EL function often shares properties with fully para-

metric likelihood, such as log-ratio statistics with chi-square limits (i.e., Wilks’5

phenomenon). Extending EL to dependent data requires caution as EL ap-

proaches for independent data (Owen, 1990; Qin and Lawless, 1994) typically

fail with correlated processes. For example, Kitamura (1997) proposed a block-

based EL as a device for extending EL to time series, whereby time blocks of

observations are used to capture dependence. While this EL version is valid for10

several inference problems with time series and spatial lattice data, its perfor-

mance depends on the choice of block size which is a compounding issue with

spatial sampling. See Nordman and Lahiri (2014) for a review of EL for times

series.

The EL approach considered here, particularly for spatial data with ir-15

regular locations, is based on a data transformation, or the discrete Fourier

transform. In contrast to data-blocking, translation into the frequency domain

aims to whiten or weaken dependence prior to implementing EL. Addition-

ally, frequency domain analysis is particularly useful for examining covariance

structures (cf. Bochner (1959); Gikhman and Skorokhod (1974); Yaglom (1987);20

Stein (1999)). For time series, Monti (1997) and Nordman and Lahiri (2006)

introduced a frequency domain EL method, premised on the asymptotic in-

dependence of periodogram ordinates. Recently, Bandyopadhyay et al. (2015)

(henceforth referred to as [BLN]) proposed a frequency domain EL for spatial

processes having stochastic sampling designs. Similarly to the time series case,25

this spatial EL is based on estimating functions along with a notion of asymp-

totic independence of spatial periodogram values, and the method produces

log-ratio statistics with chi-square limits. However, no component of EL point

estimation was examined, which is our focus here.

We provide distributional results for the maximizer of the spatial EL func-30

tion. Perhaps surprisingly, we find this point estimator exhibits non-standard

behavior for spatial data in contrast to (equi-spaced) time series. In fact, due

to complications arising in the frequency domain analysis of irregularly located

spatial observations, the EL point estimator does not even necessarily have a
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limit distribution, where normal limits typically hold for time series and for most35

applications of EL (cf. Owen (2001) and references therein). Interestingly, while

normal limits for the EL maximizer may fail, EL log-ratio statistics generally

retain standard chi-square limits, useful for testing and calibrating confidence

regions. Our goal is to outline these non-standard EL results for spatial pro-

cesses.40

2. Framework for Spatial Frequency Domain EL

Section 2.1 describes the spatial sampling and frequency domain inference.

Section 2.2 then provides the associated spatial EL method. In our exposition,

we also highlight comparisons to the more established EL counterpart for time

series to help frame later comparisons.45

2.1. Spatial Data and Spectral Inference Problem

Consider a real-valued, second-order stationary spatial process {Z(s : s ∈

Rd}, where d denotes the dimension of spatial sampling. To specify the spatial

sampling design, we follow Hall and Patil (1994) and [BLN]. We suppose the pro-

cess Z(·) is observed at n irregularly located sites s1, . . . , sn within a sampling50

region Dn = λnD0 ⊂ Rd. Here D0 is an open, connected subset of (1/2, 1/2]d

containing the origin, representing a “template” for the sampling region, and

{λn} is a real positive sequence such that λn → ∞ as n → ∞. This standard

formulation permits a variety of region shapes for consideration; see [BLN] for

details. To specify the sampling locations, independently of {Z(s) : s ∈ Rd},55

let {Xk}k≥1 ⊂ D0 be a sequence of independently and identically distributed

Rd-valued random vectors, with probability density function f(x) on the clo-

sure of D0. Sites s1, . . . , sn are then generated as si = λnXi, i = 1, . . . , n

which allows for arbitrary spatial patterns in the stochastic sampling design. In

contrast to the directional asymptotics of equi-spaced time series, spatial sam-60

pling is complicated by varying types of spatial asymptotic structure (Lahiri,

2003), between which the limit laws of statistics may change; see also Stein
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(1989); Cressie (1993); Lahiri and Mukherjee (2004) and the references therein.

Namely, the number n of sampling sites may grow at a potentially different rate

than the volume λdn of the sampling region Dn, leading to different asymptotic65

spatial regimes (Cressie, 1993; Lahiri, 2003). Let c = limn→∞ λdn/n ∈ [0,∞).

The case c > 0, where the number of spatial observations is proportional to the

volume of the region, corresponds to pure increasing domain (PID) asymptotics;

this has parallels to standard time series sampling. On the other hand, the case

c = 0 corresponds to spatial sampling with a heavy infill component, allowing70

the number of spatial observations to increase at a faster rate than the volume

of the region; we refer to this as mixed increasing domain (MID) asymptotics.

To frame the inference in the spatial frequency domain, let us suppose

σ(h) = Cov(Z(0), Z(h)), h ∈ Rd and φ(ω), ω ∈ Rd denote the autocovariance

function and spectral density of the process Z(·), respectively. Consider a spa-

tial parameter θ ∈ Θ ⊂ Rp about which information may be expressed through a

system of estimating equations involving φ(·). Specifically, let G : Rd×Θ→ Rr

be a vector of r ≥ p estimating functions (of both frequencies in Rd and param-

eters in Rp) such that Gθ(ω) ≡ G(ω; θ), ω ∈ Rd, satisfies a spectral moment

condition ∫
Rd

Gθ(ω)φ(ω) dω = 0r (1)

at a true parameter θ0 ∈ Θ, where 0r ∈ Rr denotes the zero vector. Parameters

prescribed by the condition (2) include autocorrelations and normalized spectral

distributions; for example, r = p functionsGθ(ω) =
(

cos(h′1ω), . . . , cos(h′pω)
)′−75

θ ∈ Rp satisfies (2) for correlations θ = (σ(h1), . . . , σ(hp))
′/σ(0) at given lags

h1, . . . ,hp ∈ Rd; see [BLN] for further examples.

Considering a regular time process {Zt : t ∈ Z} (i.e., sampled on the integer

grid), the frequency domain formulations of EL use similar estimating equa-

tions (cf. Monti, 1997; Nordman and Lahiri, 2006). In this case, the analogous

moment condition to (1) becomes∫ π

−π
Gθ0(ω)φ(ω)dω = 0r ∈ Rr (2)

where φ(ω), ω ∈ [−π, π], denotes the spectral density of the (second-order)
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stationary process {Zt} and Gθ(ω) ≡ G(ω, θ) represents r ≥ p estimating func-

tions. For time processes, Monti (1997) and Yau (2012) have considered types80

of Gθ(·) for EL estimation of spectral density models, and functions may also be

prescribed for inference about ratios of spectral means, such as autocorrelations

(Nordman and Lahiri, 2006). However, for irregularly located spatial data, the

difference, and indeed challenge, is that the frequency domain corresponds to

Rd (e.g., in the condition (1)) rather than a compact set for regular time se-85

ries (e.g., [−π, π] in (2)). We later show that this feature, combined with the

differing spatial asymptotic designs, contributes to non-standard distributional

results with point estimation in spatial EL (Section 3).

2.2. Frequency Domain Version of EL

The spatial EL approach uses the periodogram for frequency domain infer-

ence. Define a raw spatial periodogram of the data {Z(s1), . . . , Z(sn)} at a

frequency ω ∈ Rd as

In(ω) =

∣∣∣∣∣∣λd/2n n−1
n∑
j=1

Z(sj) exp (ıω
′
sj)

∣∣∣∣∣∣
2

, ı ≡
√
−1.

This data transformation serves to pre-whiten spatial dependence and, similarly

to time series, the resulting spatial periodogram has independence properties in

large samples (Bandyopadhyay and Lahiri, 2009). Namely, along two sequences

of frequencies {ω1n}n≥1, {ω2n}n≥1 ⊂ Rd, ordinates In(ω1n), In(ω2n) are asymp-

totically independent if and only if {ω1n} and {ω2n} are asymptotically distant

(i.e., ‖λn(ω1n − ω2n)‖ → ∞ as n → ∞). However, unlike regular time series

(Brillinger, 1981), The spatial periodogram can have a nontrivial bias, depend-

ing on spatial asymptotics (Bandyopadhyay and Lahiri, 2009; Matsuda and

Yajima, 2009). Namely,

lim
n→∞

EIn(ω) = cσ(0) +Kφ(ω) for ω ∈ Rd, (3)

holds, where φ(·) and σ(·) denote the spectral density and covariance function of

the process Z(·), K = (2π)d
∫
Rd f

2 involves the spatial sampling density f , and
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limn→∞ λdn/n = c. Under PID sampling (c ∈ (0,∞)), there exists a non-trivial

bias component, which disappears in the MID case (c = 0). To address this, we

use a bias-corrected periodogram as

Ĩn(ω) = In(ω)− n−1λdnσ̂n(0), ω ∈ Rd

where σ̂n(0) = n−1
∑n
j=1 (Z(sj)− Z̄n)2 is the sample variance with Z̄n =90

n−1
∑n
i=1 Z(si).

Frequency domain versions of EL for time series use the periodogram and es-

timating functions to approximate a spectral moment condition (e.g., (2)) along

a discrete set of frequencies (i.e., the usual Fourier frequencies 2πj/n, integer

|j| < n/2) and exploit features of asymptotic independence in periodogram

ordinates. The spatial EL is similarly formulated using the (bias-corrected)

spatial periodogram to mimic the spectral mean (1) along a discretized set of

frequencies, chosen to ensure the periodogram evaluations are approximately

uncorrelated; see [BLN]. For κ ∈ (0, 1), η ∈ (κ,∞), and C ∈ (0,∞), define a set

of Fourier frequencies as

Nn =
{
jλ−κn : j ∈ Zd, j ∈ [−Cληn, Cληn]d

}
.

Let N = |Nn| be the cardinality of Nn, and let ωkn, k = 1, . . . , N (with arbi-

trary ordering) denote the elements of Nn. The frequencies {ωkn}Nk=1 form a

regular lattice over the set [−Cλη−κn , Cλη−κn ] ↑ Rd as n → ∞, which is impor-

tant for covering the entire frequency domain Rd asymptotically. Also, any95

pair of frequencies ωkn,ωjn ∈ N in the set is asymptotically distant (i.e.,

λn‖ωkn − ωjn‖ ≥ λ1−κn → ∞), which ensures that associated periodogram

values are approximately independent; see also [BLN].

To numerically assess the plausibility of a parameter θ, the (normalized) EL

function for θ is

Rn(θ) = sup

{
N∏
k=1

Npk :

N∑
k=1

pk = 1, pk ≥ 0,

N∑
k=1

pkGθ(ωkn)Ĩn(ωkn) = 0r

}
∈ [0, 1]

(4)

based on estimating functions Gθ(·). The EL function is a likelihood found

by probability profiling the (approximately independent) periodogram variants100

6



under a linear constraint that imitates the moment condition (1). Similarly

to parametric likelihood, (4) quantifies the strength of evidence in support of

θ. Maximizing Rn(θ) over the parameter space Θ ⊂ Rp produces an EL point

estimator θ̂n ∈ Θ of interest here. note that EL functions and point estimators

for time series have the same formulation, but based on the standard Fourier105

frequencies in (4) (cf. Monti, 1997; Nordman and Lahiri, 2006). However, the

large-sample properties of the maximizer θ̂n in the spatial case differ dramati-

cally from the time series version of EL, as considered next.

3. Main Results

To study the spatial EL point estimator θ̂n in frequency domain inference,110

Section 3.1 first outlines a critical spatial regularity condition which impacts

distributional results for the estimator, described in Section 3.2. The latter

section concludes with summary remarks.

3.1. A Spatial Frequency-Average Condition

We require some mild assumptions on the dependence of the second-order115

stationary process {Z(s) : s ∈ Rd}, expressed in terms of mixing/moment

conditions; see also [BLN]. These regularity conditions (denoted as Conditions

(C.1)-(C.8)) are described in the Supplementary Materials. For our purposes, we

need only emphasize one condition (Condition (C.3)) regarding the r spectral

estimating functions Gθ(ω), ω ∈ Rd in the spatial EL method. Recall that120

the EL function (4) uses a frequency grid {ωjn}Nj=1 for evaluating the spatial

periodogram as well as estimating functions {Gθ(ωjn)}Nj=1. Let θ0 ∈ Rp denote

the true parameter solving (1).

We suppose that, given any subsequence {nj} ⊂ {n} or path of spatial

sample sizes, one may extract a further subsequence {k ≡ nk} ⊂ {nj} such that

the frequency-based average

lim
k→∞

1

Nk

Nk∑
j=1

Gθ0(ωjk)G′θ0(ωjk) = Γ∗ ≡ Γ∗({nk}) (5)
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has a limit for some non-singular r × r matrix Γ∗ that may change with the

subsequence k = nk. Here {Gθ(ωjk)}Nk
j=1 represents an evaluation of the fre-

quency grid along the subsequence {k ≡ nk}. Note that, in the regular time

series setting, the analog of (5) would be

lim
k→∞

1

Nk

∑
|j|<nk/2

Gθ0(2πj/nk)G′θ0(2πj/nk) = Γ∗

using the usual discrete Fourier frequencies (with Nk ≈ nk). In the time case

and under mild conditions on Gθ0(·) (e.g., Riemann integrable on [−π, π]), such

limits hold trivially with a unified limit point Γ∗ ≡ (2π)−1
∫ π
−π Gθ0(ω)G′θ0(ω)dω

that does not depend on the subsequence {nk}. However, as a complication

with irregularly located spatial data, the spatial integral counterparts∫
Rd

Gθ0(ω)G′θ0(ω)dω

are often divergent due to the unbounded frequency domain Rd and, while the

condition (5) is not generally stringent, there is no guarantee that the limit

Γ∗({nk}) is consistent throughout all subsequences. For example, a real-valued

estimating function Gθ0(ω) = I(ω ≤ t)−θ0, for the normalized spectral distribu-

tion θ0 =
∫
ω≤t φ(ω)dω/

∫
φ(ω)dω at a given t ∈ Rd, has a limit Γ∗ = −2−d+θ20

regardless of the subsequence {nk}. on the other hand, for illustration, a real

estimating function Gθ0(·) : Rd → R may be chosen so that

1

N

N∑
j=1

Gθ0(ωjn)2 ∝ exp[sin(πN/4)] + 2 as n→∞,

in which case the limit Γ∗ ≡ Γ∗({nk}) in (5) has five possible values: exp (x)+2

for x ∈ {0,±1,±1/
√

2}. This potential variation in the spatial limit (5) , along125

with the different asymptotic regimes possible with irregularly located spatial

data, translates into unusual asymptotic behavior for the spatial EL estimator

θ̂n that does not occur in the EL analog for time series.

3.2. Non-standard Distribution of Spatial EL Point Estimator

To present results for θ̂n, we note first that [BLN] have shown that limit130

distributions for certain spatial EL statistics (i.e., −2a logRn(θ0) based on (4)
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without point estimation) change slightly between PID/MID spatial sampling

regimes, corresponding to limn→∞ cn ∈ (0,∞) or limn→∞ cn = 0 for cn = λdn/n

(namely, the proper scaling a may be 1 or 1/2). A further dichotomy exists

in the MID case according how much faster n grows relative to the volume λdn135

of the spatial sampling region, which is quantified by the volume Nλ−κdn → ∞

of the frequency grid in the EL method (cf. Section 2.2). Recall N and λ−κdn

denote the number of, and volume between, such frequency spacings. By theory

in [BLN], “slow infill rate” MID involves a sample size n bounded by a slow

increase to the size of the sampling region (i.e., c−2n = n2/λ2dn � Nλ−κdn ) while140

“fast infill rate” MID involves n remaining larger than such an increase (i.e.,

Nλ−κdn � c−2n = n2/λ2dn ). Essentially, these definitions or types of spatial

asymptotics relate to how fast a term cn = λdn/n, controlling bias in the spatial

periodogram (3), decays to zero, with the fastest decay rate occurring under the

“fast infill” MID case. We show that the spatial sampling design also impacts145

the EL point estimator here, with further, more serious, complications due to

the frequency average (5). Let P (·) ≡ P (·|X) denote probability conditional on

the collection of random vectors X ≡ {Xi}i≥1 ⊂ Rd (defining spatial locations

in Section 2.1), and let PX denote the joint distribution of X1,X2, . . .. Write

sn ∼ tn for two positive sequences where sn/tn → 1 as n→∞.150

Theorem 1. Suppose Conditions (C.1)-(C.8) hold, Dθ0 ≡
∫
R[∂Gθ0(ω)/∂θ]φ(ω)dω

has full column rank p, and let cn = λdn/n, b2n = Nc2n + λκdn . Given any sub-

sequence {nj} ⊂ {n}, extract a further subsequence {k ≡ nk} ⊂ {nj} such

that (5) holds with a limit Γ∗. Then, for the spatial EL estimator θ̂k along the

subsequence, it follows that λκdk /bk →∞ and

λκdk
bk

(θ̂k − θ0)
d−→ N

(
0p, (D

′
θ0V

−1Dθ0)−1
)

a.s. (PX) (6)

for a positive definite matrix V defined as

V = 2σ2(0)Γ∗ for PID: cn → c ∈ (0,∞), b2n ∼ Nc2n;

V = 2σ2(0)Γ∗ for “slow infill rate” MID: cn → 0, b2n ∼ Nc2n;

V = 2Γ for “fast infill rate” MID: cn → 0, b2n ∼ λκdn ,
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where Γ ≡
∫
Rd

Gθ0(ωjn)G′θ0(ωjn)K2φ2(ω) dω, K = (2π)d
∫
Rd

f(ω)2dω.

Distributional convergence behavior in the spatial EL estimator θ̂n holds regard-

less of the outcome of spatial sampling locations X1,X2, . . . (i.e., a.s. (PX)).

While θ̂n is indeed consistent for the true spatial parameter θ0, an unusual issue

is that the variance V of an associated normal limit depends on the asymptotic

spatial sampling structure, particularly the dichotomy of “fast infill” MID or not

(i.e., alternatively “slow infill” MID or PID regimes). Furthermore, for “slow

infill” MID or PID spatial cases, this limiting variance V of θ̂n can also depend

on the sample subsequence {k ≡ nk} determining Γ∗ from (5). Note that this

is not an issue with a “fast infill” MID structure, as the limiting variance does

not involve Γ∗. However, because Γ∗ may in fact change across subsequences

(Section 3.1), there is no guarantee that the spatial EL estimator θ̂n actually

converges in distribution in the “slow infill” MID and PID spatial cases. This

is atypical for EL methods generally and for the frequency domain version with

time series in particular. For (equi-spaced) time series, the same point estimator

has a standard normal limit (cf. Nordman and Lahiri, 2006):

√
n
(
θ̂n − θ0

)
d−→ N (0p, Vθ0),

where Vθ0 has the same form as V in Theorem 1 under the “fast infill rate” MID

case (with the convention that the domain of integrals is switched to [−π, π] and

K = 2π with d = 1 there). This variance correspondence is also, at first glance,

surprising as asymptotic sampling scheme for time series (i.e., Z1, . . . , Zn with

n → ∞) most closely resembles PID spatial sampling (cf. Cressie, 1993). The155

explanation for this correspondence, as well as for the different cases in Theorem

1 by spatial asymptotic structures, lies in the fact the spatial periodogram has

bias (3) that change depending on the spatial asymptotic regime. Under “fast

infill” MID, the spatial periodogram is essentially unbiased which then closely

matches periodogram properties for standard time series (Brillinger, 1981). In160

comparison, the bias of the spatial periodogram does not decay as quickly under

“slow infill” MID or PID regimes as a function of cn = λdn/n (cf. (3)), which
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creates the limiting cases in Theorem 1.

The Theorem 1 behavior in point estimation may be traced to a few key

and complicating factors in frequency domain EL inference for irregularly lo-165

cated spatial data. The spatial periodogram provides a data transformation

which is helpful for weakening spatial dependence prior to implementing EL.

But, as a consequence, one must then treat spectral estimating functions and

their moment condition (1) in the spatial EL. This step loses estimating func-

tions framed in terms of process probability distributions, which are more com-170

monly and broadly applied in EL formulations for independent and time series

data; see Owen (1990, 2001), Qin and Lawless (1994), Kitamura (1997). Then

upon translating EL into the frequency domain, a second complicating feature

is the unbounded frequency domain Rd inherent to such spatial data. In the

spatial EL, this aspect creates additional complexities for spectral estimating175

functions, based on spatial frequencies, because of the averaging condition (5).

Non-standard asymptotics then result for EL point estimators in combination

with the spatial asymptotic structure (and bias issues (3) in the spatial peri-

odogram).

Remark: While the EL point estimator θ̂n may not converge in distribution180

under the regularity assumption (5), log-ratio statistics −2 log[Rn(θ0)/Rn(θ̂n)],

under the same condition, generally can have chi-square limits based on the

spatial EL function (4) (at the true parameter θ0). In other words, despite

the non-standard behavior in spatial point estimators θ̂n, EL log-ratio statistics

based on θ̂n have more standard behavior for potential application in parameter185

tests and confidence regions. Hence, the spatial EL may provide frequency

domain inference for spatial processes without stringent assumptions about the

underlying process distribution, the stochastic pattern of locations, or even the

type of spatial asymptotic structure (PID/MID). This provides an improvement

upon the EL theory and methodology in [BLN] who considered simplified test190

statistics −2 log[Rn(θ0)] without maximum EL estimation. The potential uses

of test statistics involving the EL maximizer θ̂n will be considered elsewhere;

see (Van Hala et al., 2015).
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