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Abstract

This supplement provides regularity conditions and a proof of the main distri-

butional result for the spatial empirical likelihood (EL) point estimator. The

supplement is organized as follows. Section A outlines the notation used, fol-

lowed by a description of the regularity conditions in Section B. Section C briefly

outlines some preliminary, independent results. Section D then provides proofs

for characterizing the distributional properties of spatial EL estimator in the

frequency domain (i.e., Theorem 1 of the main manuscript). Any citations

mentioned here will be provided in a reference section of this supplement.

Appendix A. Notation

Recall the spatial periodogram In(ω) of {Z(s1), . . . , Z(sn)} at a frequency

ω ∈ Rd as In(ω) = |dn(ω)|2, where ı =
√
−1 and dn(ω) = λ

d/2
n n−1

∑n
j=1 Z(sj) exp(ıω′sj).

Let cn = n/λdn (defined slightly different here than cn = λdn/n in Section 3 of the

main manuscript) and b2n = Nc−2
n + λκdn , where N = |N | denotes the number

of frequencies in the grid N =
{
jλ−κn : j ∈ Zd, j ∈ [−Cληn,−Cληn]d

}
= {ωjn :

j = 1, . . . , N}. We suppose the indexing is done so that ω1n = 0 ∈ Rd. The
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bias corrected periodogram is Ĩn(ω) = In(ω)−c−1
n σ̂n(0) for the sample variance

σ̂n(0) = n−1
∑n
i=1 (Z(si)− Z̄n)2, with Z̄n = n−1

∑n
i=1 Z(si) denoting the sam-

ple mean. Let I∗n(ω) = In(ω) − c−1
n σ(0), and An(ω) = c−1

n σ(0) + Kφ(ω),ω ∈

Rd, where K = (2π)d
∫
f2. Set Σn = 2

∑N
k=1Gθ0(ωkn)Gθ0(ωkn)′An(ωkn)2 at

the true parameter θ0. Let f̂(ω) =
∫
eıx

′ωf(x)dx and f̂2(ω) =
∫
eıx

′ωf2(x)dx

for ω ∈ Rd.

In the following, for a random quantity Y depending on both X ≡ {Xi}i≥1

and {Z(s) : s ∈ Rd}, we let EY ≡ E·|X denote expectation conditional on X

and likewise let P (·) = P·|X(·) denote probability conditional with respect to

X. The notation
p−→,

d−→, Op(·) and op(·) will represent convergence in proba-

bility and distribution as well as probabilistic orders in terms of this conditional

probability. Also, we let PX and EX denote probability and expectation under

the joint distribution of {Xi}i≥1. Let C or C(·) denote generic constants that

depend on their arguments (if any), but do not depend on n or {Xi}i≥1.

Appendix B. Regularity Conditions

We require some mild assumptions on the dependence of the process {Z(s) :

s ∈ Rd}, formulated in terms of mixing/moment conditions, as well as some

assumptions on the estimating functions Gθ(·). For x = (x1, ..., xk)′ ∈ Rk, let

‖x‖ ≡ (
∑k
i=1 |xi|2)1/2, ‖x‖1 ≡

∑k
i=1 |xi| and, for E1, E2 ⊂ Rk, let d1(E1, E2) =

inf{‖x − s‖1 : x ∈ E1, s ∈ E2}. For a, b ∈ (0,∞), define the strong mixing

coefficient of Z(·) as

α(a, b) = sup
Ai∈FZ(Ei), i=1,2

{|P (A1 ∩A2)− P (A1)P (A2)| : Ei ∈ Cb, d1(E1, E2) ≥ a} ,

where FZ(E) is the σ-field generated by {Z(s) : s ∈ E} and Cb is the collection

of d-dimensional rectangles with volume b or less. We shall suppose that

α(a, b) ≤ γ1(a)γ2(b), a, b ∈ (0,∞)

for some left continuous, non-increasing function γ1 : (0,∞)→ [0,∞) and some

right continuous, non-decreasing function γ2 : (0,∞) → (0,∞) (Lahiri , 2003).
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Note that we allow the function γ2(·) in the above formulation to grow to infinity

to ensure validity of the results for bonafide strongly mixing random fields in d ≥

2 (Bradley , 1989, 1993; Lahiri , 2003). We again assume that {Z(s) : s ∈ Rd}

is second order stationary with mean zero and spectral density φ(ω), ω ∈ Rd

and σ(0) = Var[Z(0)]. We write cn = n/λdn, recalling that c∗ = limn→∞ cn

determines the spatial asymptotic structure (Section 2.1) with c∗ ∈ (0,∞) under

pure increasing domain and c∗ =∞ under mixed increasing domain. Recall b2n =

Nc−2
n + λκdn . We next list regularity conditions for establishing the empirical

likelihood results. Recall θ0 ∈ Rp denotes the true parameter satisfying (1).

Conditions

(C.1): There exists δ ∈ (0, 1] such that

ζ8+δ ≡ sup{(E|Z(s)|8+δ)
1

8+δ : s ∈ Rd} and

∞∑
k=1

k7d[γ1(k)]
δ

8+δ <∞.

(C.2): (i) The spatial sampling density f(·) is everywhere positive on D0 and

satisfies a Lipschitz condition: for some C0 ∈ (0,∞), |f(x)−f(y)| ≤ C0‖x−y‖

for all x,y ∈ D0.

(ii) There exist C1 ∈ (0,∞) and a0 ∈ (d/2, d] such that for all ‖ω‖ > C1,∣∣∣∣∫ eıω
′xf(x)dx

∣∣∣∣+

∣∣∣∣∫ eıω
′xf2(x)dx

∣∣∣∣ ≤ C1‖ω‖−a0 .

(C.3): (i) Gθ0(·) is bounded, symmetric, and almost everywhere continuous on

Rd (with respect to the Lebesgue measure) with
∫
Gθ0(ω)φ(ω) dω = 0r;

(ii) There exist C2 ∈ (0,∞) and a non-increasing function h : [0,∞) → [0,∞)

such that |φ(ω)| ≤ h(‖ω‖) for all ‖ω‖ > C2;

(iii) lim infn→∞ det
(
N−1

∑N
k=1Gθ0(ωkn)G′θ0(ωkn)

)
> 0;

(iv)
∫
Gθ0(ωin)G′θ0(ωin)φ(ω)2 dω is nonsingular.

(C.4): (i) 0 < κ < η < 1 and (ii) Σ
−1/2
n

∑N
k=1Gθ0(ωkn)[In(ωkn)− c−1

n σ(0)]
d−→

N(0r, Ir×r) for Σn = 2
∑N
k=1Gθ0(ωkn)Gθ0(ωkn)′[c−1

n σ(0) + Kφ(ωkn)]2, K =

(2π)d
∫
f2.

(C.5): λ−κdn b
3/4
n N3/8 log λn + N(n−1/2+ε + λ

−d/2
n )λ−κd = o(1) as n → ∞ for
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some ε > 0. (C.6): For each n ≥ 1, there exists a function Mn(·) where∥∥∥∥∥
N∑
k=1

Gθ0(ωkn)Gθ0(ωkn)′ exp(ıt′ωkn)

∥∥∥∥∥ ≤Mn(t) for all t ∈ Rd,

such that, with dv(t,x) = ‖t‖f(x) [γ1(‖t‖)]δ/(8+δ)
dt dx and δ > 0 from Condi-

tion (C.1) and for any a1, a2, a3 ∈ {0, 1},∫ ∫
Mn (t + a1 [s + 2λna2x + 2λna3y]) dν(t,x)dν(s,y) = o

(
λ1+κd
n

)
.

(C.7): In a neighborhood of θ0 and for each ω ∈ Rd, hθ(ω) ≡ ∂Gθ(ω)/∂θ

is continuous in θ and ‖∂2Gθ(ω)/∂θ∂θ′‖ ≤ C for some C > 0; and hθ0(·) is

continuous almost everywhere.

(C.8): For n ≥ 1, there exist functions M̃
(1)
n (·) and M̃

(2)
n (·) where, for all t ∈ Rd,∥∥∥∥∥∥

N∑
j=1

hθ0(ωjn) exp(ıt′ωjn)

∥∥∥∥∥∥ ≤ M̃ (1)
n (t),

∥∥∥∥∥∥
N∑
j=1

hθ0(ωjn)hθ0(ωjn)′ exp(ıt′ωjn)

∥∥∥∥∥∥ ≤ M̃ (2)
n (t),

such that with dv(t,x) = ‖t‖f(x) [γ1(‖t‖)]δ/(8+δ)
dt dx and δ > 0 from Condi-

tion (C.1),
∫
M̃

(1)
n (t) dv(t,x) = o(λ1+κd

n ) and, for any a1, a2, a3 ∈ {0, 1},∫ ∫
M̃ (2)
n (t + a1 [s + 2λna2x + 2λna3y]) dv(t,x) dv(s,y) = o

(
λ1+2κd
n

)
.

Regarding the assumptions, Conditions (C.1)-(C.6) are essentially those of

Bandyopadhyay et al. (2015a), with a slight strengthening of the number of fi-

nite moments. Condition (C.1) is a standard moment/mixing condition ensuring

the periodogram has a fourth moment. Condition (C.2) are smoothness condi-

tions on the location density f and the Fourier transforms of f and f2; uniform

and many smooth non-uniform densities f satisfy (C.2)(ii) with a decay rate

O(‖ω‖−d). Condition (C.3) provides regularity conditions on the spectral esti-

mating function Gθ0 at the true parameter θ0. These conditions also ensure that

certain Riemann sums over the frequency grid {ωkn}Nk=1 approximate a variance

integral
∫
Gθ0(ω)G′θ0(ω)dω asymptotically and that the r × r matrix Σn has
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a nonsingular limit along a sub-sequence. Considering Condition (C.4), as ex-

plained in Section 3, the choice 0 < κ < η < 1 ensures that periodogram values

{In(ωkn)}Nk=1 will be asymptotically independent on frequency gird {ωkn}Nk=1

(consisting of asymptotically distance frequencies, Section 2.2). Consequently,

the sum
∑N
k=1Gθ0(ωkn)[In(ωkn)− c−1

n σ(0)], involving a biased-corrected raw

periodogram (cf. Section 2.1), can be expected to have a normal limit with

mean zero under the spectral moment condition (1) for Gθ0(·). The central

limit theorem statement in Condition (C.4) is a primitive one, and further suffi-

cient conditions for such central limit theorems can be found in Bandyopadhyay

et al. (2015b). Moving to Condition (C.5), the rate bounds involved depend

on a technical quantity b2n = Nc−2
n + λκdn whose order can change depending

on the asymptotic frameworks and, as explained in the next section, different

asymptotic regimes induce varying behavior in empirical likelihood statistics

related to b2n. This condition can hold trivially in many cases, but we include

this to minimize technicalities. The differentiability conditions on estimating

functions in Condition (C.7) are standard in empirical likelihood frameworks

(Qin and Lawless , 1994; Kitamura , 1997). However, the bounds in conditions

(C.6)-(C.8) are also technical and related to certain Fourier transforms involv-

ing estimating functions, or their partial derivatives, over the discrete frequency

grid {ωkn}Nk=1; these bounds ensure that certain remainders in the frequency

domain arising from Taylor expansions are negligible. It can be verified that

the estimating functions considered in Section 4 of the main manuscript, for

example, satisfy (C.6)-(C.8).

Appendix C. Preliminary Technical Results

Here we collect some independent, technical results (Lemmas 1-3 to follow)

regarding expansions and convergence properties of the spatial periodogram;

proofs of these can be found in Van Hala et al. (2015).

Lemma 1 provides probabilistic bounds and expansions for sums of bias

corrected periodogram values. To state the result, An(ω) = c−1
n σ(0) +Kφ(ω),
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where K = (2π)d
∫
f2, for ω ∈ Rd.

Lemma 1. Under Conditions (C.1), (C.2), (C.3), (C.5) and (C.6),

(i)
1

b2n

N∑
j=1

Ĩ2
n(ωjn) = Op(1) a.s. (PX).

(ii)
1

b2n

N∑
j=1

Ĩ4
n(ωjn) = Op(1) a.s. (PX).

(iii)

N∑
j=1

Gθ0(ωjn)G′θ0(ωjn)
[
Ĩ2
n(ωjn)−

(
An(ωjn)2 +K2φ(ωjn)2

)]
= op(b

2
n) a.s. (PX),

N∑
j=1

Gθ0(ωjn)G′θ0(ωjn)
[
I2
n(ωjn)− 2An(ωjn)2

]
= op(b

2
n) a.s. (PX).

Lemma 2 next shows the convergence of Riemann sums of partial derivatives

of estimating functions, with proper scaling. For θ ∈ Θ, define

Dn,θ = λ−κdn K

N∑
j=1

hθ(ωjn)Ĩn(ωjn) (A.1)

for hθ(ω) ≡ ∂Gθ(ω)/∂θ, ω ∈ Rd and K ≡ (2π)d
∫
f2, where the partials exist

in a neighborhood of θ0.

Lemma 2. Assume Conditions (C.1), (C.2), (C.3), (C.5), (C.7), and (C.8).

Let Dθ0 ≡
∫
hθ0(ω)φ(ω)dω.

(i) Then, Dn,θ0
p−→ Dθ0 as n→∞ a.s. (PX).

(ii) For Bn ≡ {θ ∈ Θ : ‖θ − θ0‖ ≤ λ−κdn bn log λn},

sup
θ∈Bn

‖Dn,θ −Dθ0‖
p−→ 0 a.s. (PX).

Finally, Lemma 3 concerns the positivity of EL function Rn(θ), θ ∈ Θ ⊂ Rp,

(cf. Section 2.2) in a neighborhood around θ0 defined by

Θn ≡
{
θ ∈ Θ : ‖θ − θ0‖ ≤ bnλ−κdn log λn

}
.

Recall that bnλ
−κd
n log λn → 0 as n→∞ under condition (C.5).

Lemma 3. Under the assumptions of Theorem 1, P (Rn(θ) > 0 for θ ∈ Θn)→

1 as n→∞ (a.s. (PX)).

6



Appendix D. Proof of Main Result (Theorem 1)

Section D.1 first provides some supporting technical results. Section D.2 then

shows the existence of the the spatial EL point estimator θ̂n (i.e., the maximizer

of the EL function Rn(θ)) and establishes its limit distribution along different

subsequence. The limit law will depend on the subsequence as well as the spatial

sampling regime. Recall PID or MID refer to pure increasing domain or mixed

increasing domain spatial asymptotics; see Section 3.2 of the manuscript for

“slow rate” and “fast rate” MID definitions.

Appendix D.1. Background Results

We first require a distributional result which refines the CLT result in Con-

dition (C.4) Σ
−1/2
n

∑N
j=1Gθ0(ωjn)I∗n(ωjn)

d−→ N(0r, Ir) a.s. (PX), for I∗n(ω) =

In(ωjn)− c−1
n σ(0), ω ∈ Rd, and Σn = 2

∑N
j=1Gθ0(ωjn)G′θ0(ωjn)An(ωjn)2.

With b2n = Nc−2
n + λκdn , define

Jn,θ0 =
1

b2n

N∑
j=1

Gθ0(ωjn)Ĩn(ωjn), Wn,θ0 =
1

b2n

N∑
j=1

Gθ0(ωjn)G′θ0(ωjn)Ĩ2
n(ωjn).

(A.1)

Lemma 4. Under Conditions (C.1), (C.2), (C.3), (C.4) and (C.6). Given any

subsequence {nj} ⊂ {n}, extract a further subsequence {k ≥ nk} ⊂ {nj} such

that

1

Nk

Nk∑
j=1

Gθ0(ωjk)G′θ0(ωjk)→ Γ∗ ≡ Γ∗(nk) (A.2)

for a nonsingular r × r Γ∗. Then, as k →∞, it holds that

Wk,θ0
p−→ V, bkJk,θ0

d−→ N(0r, aV ) a.s. (PX) (A.3)

for a positive definite matrix V and a constant a ∈ {1, 2} as defined according

to the following cases:

PID b2n ∼ Nc−2
n , where c−1

n = n/λd → c∗ ∈ (0,∞): V = σ2(0)Γ∗, a = 2;

“slow infill” MID b2n ∼ Nc−2
n , where c−1

n = n/λd → 0 and λκd � Nc−2
n : V = σ2(0)Γ∗, a = 2;

“fast infill” MID b2n ∼ λ−κdn , where c−1
n = n/λd → 0 and Nc−2

n � λκd: V = 2Γ, a = 1 for
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Γ ≡
∫
Rd
Gθ0(ωjn)G′θ0(ωjn)K2φ2(ω) dω.

Remark: A subsequence for which (A.2) always exists under (C.3)(iii) though

the matrix Γ∗ ≡ Γ∗({nk}) may change with the subsequence k = nk.

Proof. Note that

λ−κdn

N∑
j=1

φ(ωjn)→
∫
Rd
φ(ω) dω

by the dominated convergence theorem from
∫
Rd φ(ω) dω <∞ and (C.3)(ii), so

that

N∑
j=1

φ(ωjn) = O(λκdn ) = O(b2n),

N∑
j=1

φ2(ωjn) = O(λκdn ) = O(b2n), (A.4)

where the latter follows from sup1≤j≤N |φ(ωjn)| ≤ C under (C.3)(ii).

In the PID case, we have b2n ∼ Nc−2
∗ and∥∥∥∥∥∥Σn − 2c−2

∗ σ2(0)

N∑
j=1

Gθ0(ωjk)G′θ0(ωjk)

∥∥∥∥∥∥ = o(N)

by (C.3), (A.4) and ‖Gθ0(ω)‖ ≤ C, ω ∈ Rd. Then, under the subsequence

(A.2), we have for V = σ2(0)Γ∗ that ‖(2b2k)−1Σk − V ‖ → 0 so that

‖Wk,θ0 − V ‖ ≤ ‖Wk,θ0 − (2b2k)−1Σk‖+ ‖(2b2k)−1Σk − V ‖ = op(1)

using ‖Wk,θ0 − (2b2k)−1Σk‖ = op(1) by Lemma 1(iii) and (A.4). From Σk/b
2
k →

2V and T ∗k,θ0 ≡ Σ
−1/2
k

∑Nk
j=1Gθ0(ωjk)I∗k(ωjk)

d−→ N(0r, Ir) by (C.4), we have

bkJk,θ0 =
1

bk
Σ

1/2
k T ∗k,θ0 +Rk,θ0

d−→ N(0r, 2V )

since, by |σ̂k(0)− σ(0)| = Op(λ
−d/2
k ),

Rk,θ0 ≡ ‖bkJk,θ0 − b−1
k Σ

1/2
k T ∗k,θ0‖ ≤ b

−1
k Nkc

−1
k Op(λ

−d/2
k ) = op(1) (A.5)

as Nkc
−1
k /bk = O(N

1/2
k ) = O(λ

ηd/2
k ) here with η < 1.
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In the first MID case, we have b2n ∼ Nc−2
n and∥∥∥∥∥∥Σn − 2c−2

n σ2(0)

N∑
j=1

Gθ0(ωjk)G′θ0(ωjk)

∥∥∥∥∥∥ = o(b2n)

again by (C.3) and (A.4). Under the subsequence (A.2) and for V = σ2(0)Γ∗

that ‖(2b2k)−1Σk−V ‖ → 0 so that ‖Wk,θ0−V ‖ = op(1) by ‖Wk,θ0−(2b2k)−1Σk‖ =

op(1) from Lemma 1(iii) and (A.4). As Σk/b
2
k → 2V and T ∗k,θ0

d−→ N(0r, Ir)

by (C.4), we have bkJk,θ0
d−→ N(0r, 2V ) where, analogous to (A.5), Rk,θ0 ≡

‖bkJk,θ0−b−1
k Σ

1/2
k T ∗k,θ0‖ ≤ b

−1
k Nkc

−1
k Op(λ

−d/2
k ) = op(1) asNkc

−1
k /bk = O(N

1/2
k ) =

O(λ
ηd/2
k ) with η < 1.

In the second MID case, b2n ∼ λ−κdn , Nc−2
n � λκdn , holds and, by (C.3) and

the Dominated Convergence Theorem, it follows that

‖Σn − 2λκdn Γ‖ = o(b2n)

for Γ ≡
∫
Rd Gθ0(ωjn)G′θ0(ωjn)K2φ2(ω) dω. Under the subsequence (A.2) and

for V = 2Γ that ‖b−2
k Σk − V ‖ → 0 so that ‖Wk,θ0 − V ‖ = op(1) by ‖Wk,θ0 −

b−2
k Σk‖ = op(1) from Lemma 1(iii), Nkc

−2
k � λκdk and the boundedness of

Gθ0(·). Then, from Σk/b
2
k → V (not 2V as in previous cases) and T ∗k,θ0

d−→

N(0r, Ir) by (C.4), it follows that bkJk,θ0
d−→ N(0r, V ) where, again analogous

to (A.5), Rk,θ0 ≡ ‖bkJk,θ0 − b−1
k Σ

1/2
k T ∗k,θ0‖ ≤ b

−1
k Nkc

−1
k Op(λ

−d/2
k ) = op(1) from

Nkc
−1
k /bk = o(N

1/2
k ) = o(λ

ηd/2
k ) by Nkc

−2
k � λκdk ∼ b2k with η < 1. �

The next result re-states the main distributional finding of Bandyopadhyay

et al. (2015a) for spatial EL, which shows the chi-square limit of the log-EL

function at the true value of θ0 (without consideration of point estimation); see

Bandyopadhyay et al. (2015a) for its proof.

Lemma 5. Under Conditions (C.1)-(C.8), as n→∞

−a logRn(θ0)
d−→ χ2

r a.s. (PX)

where a = 1 if b2n ∼ Nc−2
n (i.e., λ−κdn � Nc−2

n ) and a = 2 if b2n ∼ λ−κdn (i.e.,

Nc−2
n � λ−κdn ).
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The last result of this section collects some useful distributional results, re-

garding extensions of the statistics Jn,θ0 and Wn,θ0 from (A.1) and their behav-

iors on shrinking neighborhoods of the true parameter θ0. With b2n = Nc−2
n +λκdn

again, define

Jn,θ ≡
1

b2n

N∑
j=1

Gθ(ωjn)Ĩn(ωjn), Wn,θ ≡
1

b2n

N∑
j=1

Gθ(ωjn)G′θ(ωjn)Ĩ2
n(ωjn),

(A.6)

and let Zn,θ ≡ max1≤j≤N

∥∥∥Gθ(ωjn)Ĩn(ωjn)
∥∥∥ for θ ∈ Θ. Let

Θn ≡
{
θ ∈ Θ : ‖θ − θ0‖ ≤ bnλ−κdn log λn

}
,

where bnλ
−κd
n log λn → 0 as n → ∞ under condition (C.5). Define τn,θ ≡

max{λ−κdn bn, ‖θ − θ0‖} for θ ∈ Θ.

Lemma 6. Under Conditions (C.1)-(C.8), as n→∞,

(i) supθ∈Θn bn‖Jn,θ‖ = Op(log λn) (a.s. (PX)).

(ii) supθ∈Θn τ
−1
n,θ‖Jn,θ‖ = Op(1) (a.s. (PX)).

(iii) supθ∈Θn ‖Wn,θ −Wn,θ0‖ = op(1) (a.s. (PX)).

(iv) supθ∈Θn τn,θZn,θ = op(1) (a.s. (PX)).

Proof. Consider part (i). By Lemma 4, any subsequence of {n} has a further

subsequence {nk} along which bnkJnk,θ0 has a normal limit. Hence, bnJn,θ0 =

Op(1) is tight. Then, for a given θ ∈ Θn, by Taylor expansion of Jn,θ around

θ0, for θ ∈ Θn and Dn,θ ≡ λ−κdn

∑N
j=1(∂Gθ(ωjn)/∂θ)In(ωjn), we have

Jn,θ = Jn,θ0 +
λκdn
b2n

Dn,θ0+c(θ−θ0)(θ − θ0) (A.7)

for some c ∈ [0, 1] (depending on θ). Then,

sup
θ∈Θn

‖Jn,θ‖ ≤ ‖Jn,θ0‖+
λκdn
b2n

sup
θ∈Θn

‖Dn,θ‖ sup
θ∈Θn

‖θ − θ0‖

As supθ∈Θn ‖Dn,θ‖ = Op(1) by Lemma 2(ii) and ‖Jn,θ0‖ = Op(b
−1
n ), we have

sup
θ∈Θn

bn ‖Jn,θ‖ ≤ Op(1) + bn
λκdn
b2n

Op(1)bnλ
−κd
n log λn = Op(log λn).

10



For part (ii), note that τ−1
n,θ ≤ b−1

n λκdn . Using a similar Taylor expansion (A.7),

we have

sup
θ∈Θn

‖Jn,θ‖
τn,θ

≤ b−1
n λκd‖Jn,θ0‖+

λκdn
b2n

sup
θ∈Θn

‖Dn,θ‖ sup
θ∈Θn

‖θ − θ0‖
τn,θ

≤ λκdn b
−1
n Op

(
b−1
n

)
+
λκdn
b2n

Op(1) = Op(1)

using that ‖Jn,θ0‖ = Op(b
−1
n ), supθ∈Θn ‖Dn,θ‖ = Op(1) and λκd/b2n = O(1).

To show part (iii), note that by Taylor expansion of Gθ(ωjn) around θ0, we

have

Gθ(ωjn) = Gθ0(ωjn) + (θ − θ0)
∂Gθ(ωjn)

∂θ
+ Sn(ωjn),

where ‖Sn(ωjn)‖ ≤ C0‖θ − θ0‖2 for some C0 bounding ‖Gθ(·)‖ , ‖∂Gθ(·)/∂θ‖,

and
∥∥∂2Gθ0(·)/∂θ∂θ′

∥∥ over Θn. Hence, it holds that

sup
θ∈Θn

‖Wn,θ −Wn,θ0‖

≤ sup
θ∈Θn

b−2
n

N∑
k=1

(‖Gθ(ωjn)‖+ ‖Gθ0(ωjn)‖) ‖Gθ(ωjn)−Gθ0(ωjn)‖ Ĩ2
n(ωjn)

≤ 4C2
0

b2n
sup
θ∈Θn

(1 + ‖θ − θ0‖)‖θ − θ0‖
N∑
j=1

Ĩ2
n(ωjn)

= O(bnλ
−κd
n log λn)Op(1) = op(1),

by Lemma 1(i).

Considering part (iv), note first that, by Lemma 1(ii) and the bounded

Gθ0(·), EZn,θ0 ≤
(

E
∑N
j=1

∥∥∥Gθ0(ωjn)4Ĩ4
n(ωjn)

∥∥∥)1/4

= O(b
1/2
n ), so that

Zn,θ0 = Op(b
1/2
n ) a.s. (PX). (A.8)

Using a Taylor expansion of Gθ(·) as in the proof of part(iii) and τn,θ ≤

11



λ−κdn bn log λn,

sup
θ∈Θn

τn,θZn,θ

≤ λ−κdn bn(log λn) sup
θ∈Θn

Zn,θ

≤ λ−κdn bn(log λn)

(
Zn,θ0 + sup

θ∈Θn

C0‖θ − θ0‖ max
1≤j≤N

Ĩn(ωjn)

)

≤ λ−κdn b3/2n (log λn)
Zn,θ0

b
1/2
n

+ C0λ
−κd
n bn(log λn) sup

θ∈Θn

‖θ − θ0‖

 N∑
j=1

Ĩ2
n(ωjn)

1/2

= o(1)Op(1) +O([λ−κdn bn log λn]2)Op(bn) = o(1)

(a.s. (PX)) from Lemma 1(i), (A.8) and λ−κdn b
3/2
n log λn = o(1) by (C.5). �

Appendix D.2. Distributional Properties of the Spatial Maximum EL Estimator

We next show that a non-trivial maximizer of the EL function Rn(·) is

guaranteed to exist. For Θn ≡
{
θ ∈ Θ : ‖θ − θ0‖ ≤ bnλ−κdn log λn

}
, define its

interior Θ◦n =
{
θ ∈ Θ : ‖θ − θ0‖ < bnλ

−κd
n log λn

}
and its boundary ∂Θn ={

θ ∈ Θ : ‖θ − θ0‖ = bnλ
−κd
n log λn

}
. For θ ∈ Θn and t ∈ R, define

Qn(θ, t) ≡ 1

b2n

N∑
j=1

Ĩn(ωjn)Gθ(ωjn)

1 + t′Ĩn(ωjn)Gθ(ωjn)
; Q̃n(θ, t) ≡

N∑
j=1

[∂Gθ(ωjn)/∂θ]′Ĩn(ωjn)t

1 + t′Gθ(ωjn)Ĩn(ωjn)
.

Lemma 7. Under the assumptions of Theorem 1, a maximizer θ̂n = argmaxθ∈ΘnRn(θ)

exists on Θn satisfying θ̂n ∈ Θ◦n, Qn(θ̂n, tθ̂n) = 0r and Q̃n(θ̂n, tθ̂n) = 0p with

P -probability converging to 1 as n→∞ a.s. (PX).

Proof. It suffices to show that, for any subsequence {nj}, there exists a fur-

ther subsequence {nk} ⊂ {nj} such that the P -probability of the event in

Lemma 7 converges to one along {nk} (a.s. (PX)). From a given subsequence

{nj}, one can extract {nk} such that (A.2) holds by Condition (C.3)(iii), i.e.,

N−1
k

∑Nk
j=1Gθ0(ωjnk)G′θ0(ωjnk) → Γ∗ for a nonsingular r × r Γ∗. We shall as-

sume (A.2) setting nk = n in the following to ease the notation throughout the

remainder of the proof. For simplicity, we will also suppress (a.s. (PX)) nota-

tion so that all probability statements to follow are to be understood as holding

(a.s. (PX)).
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For `(θ) = − logRn(θ), we will first show that, with arbitrarily high P -

probability as n → ∞, `n(θ) exists and is continuously differentiable on the

neighborhood Θn of θ0. This, in turn, implies that `(θ) has a minimizer θ̂n (or

equivalently Rn(θ) has a maximizer) on the compact set Θn.

Now by Lemma 3, the event that Rn(θ) > 0 for all θ ∈ Θn has arbitrarily

high P -probability as n→∞. When Rn(θ) > 0, the spatial EL function admits

an expansion

`(θ) =

N∑
i=1

log
(
1 + t′Ĩn(ωjn)Gθ(ωjn)

)
(A.9)

for a Lagrange multiplier tθ satisfying Qn(θ, tθ) = 0r; see Owen (1990). By

Lemma 4, Wn,θ0
p−→ V holds for a positive definite V , so that by Lemma 6(iii)

(i.e., supθ∈Θn ‖Wn,θ−Wn,θ0‖ = op(1)) it follows that Wn,θ is positive definite for

all θ ∈ Θn with P -probability approaching 1 as n→∞. When Wn,θ is positive

definite and Rn(θ) > 0, ∂Qn(θ, t)/∂t is negative definite for all θ ∈ Θn. By this

fact combined with the implicit function theorem and Qn(θ, tθ) = 0r (cf. Qin

and Lawless, 1994), we have that tθ is a continuously differentiable function of

θ on Θn. Hence, with P -probability approaching 1 as n → ∞, `n(θ) is then

continuously differentiable on Θn and consequently has a minimizer θ̂n on Θn.

We next show that the minimizer θ̂n cannot be on ∂Θn, the boundary of

Θn, and then must lie in the interior Θ◦n. Write tθ = ‖tθ‖uθ, ‖uθ‖ = 1, θ ∈ Θn.

Using a standard argument to expand Qn(θ, tθ) = 0r, we get

0r = Qn(θ, tθ) = −b−2
n

N∑
j=1

Gθ(ωjn)G′θ(ωjn)′tθ Ĩ
2
n(ωjn)

1 + t′θGθ(ωjn)Ĩn(ωjn)
+ Jn,θ.

Multiplying both sides above by u′θ, adding u′θJn,θ, and taking norms gives

‖Jn,θ‖ ≥ ‖tθ‖
u′θWn,θuθ

1 + ‖tθ‖Zn,θ
,

implying

sup
θ∈Θn

τ−1
n,θ‖Jn,θ‖ ≥

supθ∈Θn τ
−1
n,θ‖tθ‖ supθ∈Θn u

′
θWn,θuθ

1 +
(
supθ∈Θn τn,θZn,θ

) (
supθ∈Θn τ

−1
n,θ‖tθ‖

) . (A.10)

As Wn,θ0
p−→ V holds for a positive definite V by construction under Lemma 4

and supθ∈Θn ‖Wn,θ −Wn,θ0‖ = op(1) by Lemma 6(iii), we have in (A.10) that

13



supθ∈Θn u
′
θWn,θuθ ≥ σ1(1+op(1)) where σ1 > 0 is the smallest eigenvalue of V .

As supθ∈Θn τ
−1
n,θ‖Jn,θ‖ = Op(1) and supθ∈Θn τn,θ‖Zn,θ‖ = op(1) by Lemma 6,

we have from (A.10) that Op(1) ≥ supθ∈Θn τ
−1
n,θ‖tθ‖(σ1 + op(1)) or

sup
θ∈Θn

τ−1
n,θ‖tθ‖ = Op(1). (A.11)

Then again expanding Qn(θ, tθ) = 0r, we may write

0r = Jn,θ −Wn,θtθ +
1

b2n

N∑
j=1

Gθ(ωjn)Ĩn(ωjn)
(
G′θ(ωjn)Ĩn(ωjn)tθ

)2

1 + t′θGθ(ωjn)Ĩn(ωjn)
.

Using supθ∈Θn ‖Wn,θ−V ‖
p−→ 0 and consequently, supθ∈Θn ‖W

−1
n,θ−V −1‖ p−→ 0,

we obtain

tθ = W−1
n,θJn,θ +Rθ, (A.12)

where

sup
θ∈Θn

‖Rθ‖ ≤ sup
θ∈Θn

∥∥∥∥∥∥∥
W−1
n,θ

b2n

N∑
j=1

Gθ(ωjn)Ĩn(ωjn)
(
G′θ(ωjn)Ĩn(ωjn)tθ

)2

1 + t′θGθ(ωjn)Ĩn(ωjn)

∥∥∥∥∥∥∥
≤ sup
θ∈Θn

∥∥∥W−1
n,θ

∥∥∥ ‖Wn,θ‖Zn,θ ‖tθ‖2

1 + Zn,θ‖tθ‖

= sup
θ∈Θn

∥∥∥W−1
n,θ

∥∥∥ ‖Wn,θ‖ (τn,θZn,θ)
(
τ−1
n,θ ‖tθ‖

)
‖tθ‖

1 + (τn,θZn,θ)
(
τ−1
n,θ‖tθ‖

)
= op

(
sup
θ∈Θn

‖tθ‖
)
, (A.13)

using Lemma 6(iv) (i.e., supθ∈Θn τn,θZn,θ = op(1)), (A.11), supθ∈Θn ‖W
−1
n,θ‖ =

Op(1), supθ∈Θn ‖Wn,θ‖ = Op(1) and supθ∈Θn Zn,θ‖tθ‖ = op(1).

For θ ∈ Θn and j = 1, . . . , N , define γj,θ ≡ G′θ(ωjn)Ĩn(ωjn)tθ, noting that

sup
θ∈Θn

max
1≤j≤n

|γj,θ| ≤ sup
θ∈Θn

Zn,θ‖tθ‖ = op(1). (A.14)
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When supθ∈Θn max1≤j≤n |γj,θ| is small, we may use a Taylor expansion and

(A.12) to express `n(θ) in (A.9) as

`n(θ) =

N∑
j=1

log(1 + γj,θ) =

N∑
j=1

γj,θ −
1

2

N∑
j=1

γ2
j,θ + R̃n,θ

=

N∑
j=1

G′θ(ωjn)Ĩn(ωjn)tθ −
1

2
t′θ

N∑
j=1

Gθ(ωjn)G′θ(ωjn)Ĩ2
n(ωjn)tθ + R̃n,θ

= b2nJ
′
n,θ

(
W−1
n,θJn,θ +Rθ

)
− 1

2

(
W−1
n,θJn,θ +Rθ

)′
b2nWn,θ

(
W−1
n,θJn,θ +Rθ

)
+ R̃n,θ

=
1

2
b2nJn,θW

−1
n,θJn,θ −

1

2
b2nR

′
θWn,θRθ + R̃n,θ. (A.15)

where Rθ is from (A.12) and R̃n,θ is a remainder (from Taylor expansion)

bounded by

sup
θ∈Θn

∣∣∣R̃n,θ∣∣∣ ≤ sup
θ∈Θn

1

3

‖Wn,θ‖Zn,θ‖tθ‖3b2n
(1− ‖tθ‖Zn,θ)3

= op

(
sup
θ∈Θn

‖tθbn‖2
)
. (A.16)

from (A.14). By (A.12)-(A.13) and Lemma 6(i),

sup
θ∈Θn

‖bntθ‖ ≤ sup
θ∈Θn

∥∥∥W−1
n,θ

∥∥∥ sup
θ∈Θn

b ‖Jn,θ‖+ sup
θ∈Θn

bn ‖Rθ‖

= Op(1)Op(log λn) + op

(
sup
θ∈Θn

‖tθbn‖
)

so that

sup
θ∈Θn

‖bntθ‖ = Op(log λn), (A.17)

sup
θ∈Θn

‖bnRθ‖ = op(log λn), (A.18)

sup
θ∈Θn

|R̃n,θ| = op(log2 λn), (A.19)

where the last bound follows by modifying (A.16). Hence, combining (A.15),

(A.18), and (A.19), we get

sup
θ∈∂Θn

∣∣∣∣`n(θ)− 1

2
b2nJ

′
n,θW

−1
n,θJn,θ

∣∣∣∣ = op(log2 λn)

which can be further re-written as

sup
θ∈∂Θn

∣∣∣∣`n(θ)− 1

2
b2nJ

′
n,θV

−1Jn,θ

∣∣∣∣ = op(log2 λn)
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from

sup
θ∈Θn

∥∥∥b2nJ ′n,θW−1
n,θJn,θ − b

2
nJ
′
n,θV

−1Jn,θ

∥∥∥ ≤ sup
θ∈Θn

b2n‖Jn,θ‖2 sup
θ∈Θn

∥∥∥W−1
n,θ − V

−1
∥∥∥

= Op(log2 λn)op(1)

by supθ∈Θn

∥∥∥W−1
n,θ − V −1

∥∥∥ = op(1) and Lemma 6(i). For θ ∈ ∂Θn, it holds

that θ = θ0 +
(
λ−κdn bn log λn

)
vθ for some vθ ∈ Rp with ‖vθ‖ = 1, so that by

Lemma 2(ii)

bnJn,θ = bnJn,θ0 +
λκdn
bn

(Dθ0 + op(1))λ−κdn bn log λnvθ = Mn,θ + op(log(λn)).

Mn,θ ≡ bnJn,θ0 +Dθ0vθ log λn, where the op(log(λn)) term is uniform in θ ∈ Θn

so that we may re-express

sup
θ∈∂Θn

∣∣∣∣`n(θ)− 1

2
M ′n,θV

−1Mn,θ

∣∣∣∣ = op(log2 λn).

Then we have, uniformly in θ ∈ ∂Θn, ‖vθ‖ = 1,

2`n(θ) = M ′n,θV
−1Mn,θ + op

(
log2 λn

)
= b2nJ

′
n,θ0V

−1Jn,θ0 + bnJ
′
n,θ0V

−1 log(λn)Dθ0vθ

+ log(λn)v′θD
′
θ0V

−1Jθ0bn + log2(λn)v′θD
′
θ0V

−1Dθ0vθ + op(log2 λn)

= log2(λn)v′θD
′
θ0V

−1Dθ0vθ + op(log2 λn)

≥ σ

2
log2(λn)(1 + op(1)),

where σ > 0 is the smallest eigenvalue of positive definite D′θ0V
−1Dθ0 (as Dθ0

has full column rank p).

Consequently, infθ∈∂Θn `n(θ) ≥ 2−1σ log2(λn)(1 + op(1)), while by Lemma 5

`n(θ0) = Op(1). Hence, the minimizer θ̂n of `n(θ) on Θn must lie in Θ◦n and, as

`(θ) is continuously differentiable on Θ, it follows that

0p =
∂`n(θ)

∂θ

∣∣∣∣
θ̂n

= Q̃n(θ̂n, tθ̂n) +

[
∂tθ̂n
∂θ

]′
Qn(θ̂n, tθ̂n)

using Qn(θ̂n, tθ̂n) = 0r. This completes the proof. �

The final result is a distributional characterization of the spatial EL point

estimator.
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Lemma 8. Under the assumptions of Theorem 1, given any subsequence {nj} ⊂

{n}, extract a further subsequence {k ≡ nk} ⊂ {nj} such that (A.2) holds.

Then, for the maximizer θ̂k and its Lagrange multiplier tθk along the subse-

quence, it holds that bktθ̂k

(θ̂k − θ0)
λκdk
bk

 d−→ N

0, a

U1 0

0 U2

 a.s. (PX)

as k →∞, where U1 = V −1−V −1Dθ0U2D
′
θ0
V −1 and U2 = (D′θ0V

−1Dθ0)−1 are

positive definite, Dθ0 ≡
∫
hθ0(ω)φ(ω)dω, and the positive definite matrix V and

constant a ∈ {1, 2} are defined in Lemma 4 (depending on both the subsequence

{k ≡ nk} and the three PID/MID subcases).

Proof. We shall use notation and preliminary results established in the proof of

Lemma 7. From a given subsequence {nj}, one can again extract {nk} such that

(A.2) holds by Condition (C.3)(iii), i.e., N−1
k

∑Nk
j=1Gθ0(ωjnk)G′θ0(ωjnk) → Γ∗

for a nonsingular r × r Γ∗. We shall henceforth assume (A.2) setting nk = n

in the following for simplicity and also suppress (a.s. (PX)) notation in P -

probability statements. Recall that, by Lemma 4, (A.3) holds for the subse-

quence, i.e., Wn,θ0
p−→ V and bnJn,θ0

d−→ N(0r, aV ) for a positive definite V

and constant a ∈ 1, 2 defined in Lemma 4.

With arbitrarily high P -probability as n→∞, the maximizer θ̂n exists with

the properties stated in Lemma 7. From Q̃n(θ̂n, tθ̂n) = 0p, we have

0p = λ−κdn

N∑
j=1

[∂Gθ̂n(ωjn)/∂θ]′Ĩn(ωjn)tθ̂nbn

1 + t′
θ̂n
Gθ̂n(ωjn)Ĩn(ωjn)

= λ−κdn

N∑
j=1

[
∂Gθ̂n(ωjn)

∂θ

]′
Ĩn(ωjn)tθ̂nbn + Sn,
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where, by the boundedness of partial derivatives under Condition (C.7), Lemma 1(i)

and supθ∈Θn ‖tθ‖Zn,θ = op(1), we have

‖Sn‖ =

∥∥∥∥∥∥λ−κdn

N∑
j=1

t′
θ̂n
Gθ̂n(ωjn)[∂Gθ̂n(ωjn)/∂θ]′Ĩ2

n(ωjn)tθ̂nbn

1 + t′
θ̂n
Gθ̂n(ωjn)Ĩn(ωjn)

∥∥∥∥∥∥
≤ C0

λ−κdn ‖tθ̂n‖
2bnOp(b

2
n)

1− ‖tθ̂n‖Zn,θ̂n
= Op

(
λ−κdn b3n‖tθ̂n‖

2
)
.

As ‖bntθ̂n‖ = Op(log λn) by (A.17) and λ−κdn bn log λn = o(1) by (C.5), it follows

then that ‖Sn‖ = op(bn‖tθ̂n‖). Then, by Lemma 2(ii), we obtain

0p = λ−κdn

N∑
j=1

[
∂Gθ̂n(ωjn)

∂θ

]′
Ĩn(ωjn)tθ̂nbn + Sn

= [Dn,θ̂n
]′tθ̂nbn + op(bn‖tθ̂n‖)

= D′θ0tθ̂nbn + op(bn‖tθ̂n‖).

From (A.7), (A.12), (A.13) along with Lemma 2(ii) and supθ∈Θn ‖Wn,θ − V ‖ =

o(1) by Lemma 6(iii), we also have

V bntθ̂n = bnJn,θ0 +Dθ0(θ̂n − θ0)λκdn b
−1
n + op(δn)

for δn = ‖θ̂n − θ0‖λκdn b−1
n + bn‖tθ̂n‖. The two previous expansions then may be

combined to yield

Σ

 bntθ̂n

(θ̂n − θ0)
λκdn
bn

 =

bnJθ0 + op(δn)

op(δn)

 (A.20)

for

Σ =

 V −Dθ0

D′θ0 0

 , Σ−1 =

 U1 V −1Dθ0U2

−U2D
′
θ0
V −1 U2

 ,
where Σn, U1 = V −1 − V −1Dθ0U2D

′
θ0
V −1, and U2 = (D′θ0V

−1Dθ0)−1 are posi-

tive definite. Taking norms in (A.20) and recalling that bnJn,θ0
d−→ N(0, aV ),

one can deduce Op(δn)(1 + op(1)) = Op(1) or δn = Op(1) so that bntθ̂n

(θ̂n − θ0)
λκd

bn

 = Σ−1

bnJθ0 + op(1)

op(1)

 =

 U1

−U2D
′
θ0
V −1

 bnJn,θ0 + op(1).

(A.21)
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Noting that U1V U
′
1 = U1, (U2D

′
θ0
V −1)V (U2D

′
θ0
V −1)′ = U2 and (U2D

′
θ0
V −1)V U ′1 =

0p×r, it now follows from bnJn,θ0 = Op(1) and (A.21) that bntθ̂n

(θ̂n − θ0)
λκd

bn

 d−→ N

0, a

U1 0

0 U2

 .

This completes the proof. �
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