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Abstract5

A multi-resolution model is developed to predict two-dimensional spatial fields based6

on irregularly spaced observations. The radial basis functions at each level of resolution7

are constructed using a Wendland compactly supported correlation function with the nodes8

arranged on a rectangular grid. The grid at each finer level increases by a factor of two9

and the basis functions are scaled to have a constant overlap. The coefficients associated10

with the basis functions at each level of resolution are distributed according to a Gaussian11

Markov random field (GMRF) and take advantage of the fact that the basis is organized12

as a lattice. Several numerical examples and analytical results establish that this scheme13

gives a good approximation to standard covariance functions such as the Matérn and also14

has flexibility to fit more complicated shapes. The other important feature of this model is15

that it can be applied to statistical inference for large spatial datasets because key matrices16

in the computations are sparse. The computational efficiency applies to both the evaluation17

of the likelihood and spatial predictions.18
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1 Introduction21

Statistical methodology for spatial data is a well developed field and has roots in22

geostatistics and multivariate analysis. More recently the breakthroughs in Bayesian23

hierarchical models have added rich new classes of models for handling heterogenous24
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spatial data and indirect measurements of spatial processes (Banerjee et al. (2003),25

Cressie and Wikle (2011)). This development in spatial statistics is coincident with26

emerging challenges in the geosciences involving new types of observations and com-27

parisons of such observations to complex numerical models. For example, as attention28

in climate science shifts to understanding the regional and local changes in future cli-29

mate there is a need to analyze high resolution simulations from climate models and30

to compare them to surface and remotely sensed observations at fine levels of details.31

These kinds of geoscience applications are characterized by large numbers of spatial32

locations. The application of standard techniques is often not feasible or at least will33

take an unacceptably long time given standard algorithms and typical computational34

resources. Moreover, geophysical processes tend to have a multi-scale character over35

space that requires statistical methods that allow for potentially complicated spatial36

dependence beyond a simple parametric model that adjusts for a correlation range37

and process smoothness. This work develops a new statistical model that addresses38

both of these challenges; our model is applicable to large data sets and supports a39

more flexible covariance structure that can be a mixture of more standard covariance40

functions. Thus our model fills a gap in current statistical methodology.41

We assume that spatial observations {yi} are made at unique two-dimensional42

spatial locations, {xi}, for 1 ≤ i ≤ n, according to the additive model:43

yi = ZT
i d+ g(xi) + εi, (1)

where Z is a matrix of covariates and d a vector of linear parameters, g is a smooth44

Gaussian process and εi are mean zero measurement errors. The parameters d repre-45

sent fixed effects in this model.46

The statistical problem in this setting is to determine g at locations where observa-47

tions are not available and quantify the uncertainty of the spatial predictions. Given48

our main goal to develop an acceptable methodology to handle large data sets, we seek49

to balance the complexity of the models and methodology with feasibility for effective50

data analysis. We will focus on maximum likelihood estimates of parameters in the51

covariance and other model components. For prediction we will adopt the conditional52

distribution of g given the data and other statistical parameters. Our approach com-53
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bines the representation of a field using a multi-resolution (MR) basis with statistical54

models for the coefficients as a process on a lattice. In this sense it is a blending of55

ideas from fixed rank Kriging (Katzfuss and Cressie 2011, Cressie and Johannesson56

2008) and stochastic partial differential equations (SPDE) including the work in Lind-57

gren and Rue (2007), Rue and Held (2005) and Lindgren et al. (2011) (LR2011). It is58

useful to view the unknown spatial process in (1) as a sum of L independent processes,59

gl(x), for 1 ≤ l ≤ L, marginal variances {ραl}, and60

g(x) =
L∑
l=1

gl(x), (2)

Here the parameter ρ > 0 is useful as a leading scaling parameter for the covariance61

matrix and the elements of α sum to one. In this way the overall spatial dependence62

of g can be much more complex than the spatial dependence of each of the individual63

components. Each component, gl is defined through a basis function expansion as64

gl(x) =

m(l)∑
j=1

cljφj,l(x). (3)

where φlj, 1 ≤ j ≤ m(l), is a sequence of fixed basis functions and cl is a vector65

of coefficients distributed multivariate normal with mean zero and covariance matrix,66

ρP l. P l may also depend on additional parameters. Thus the model for g is a sum of67

fixed basis functions with stochastic coefficients.68

Our two main ideas address the basis functions and the covariance model for the69

coefficients. We use families of radial basis functions that are organized on regular grids70

of increasing resolution. These radial basis functions have compact support and like71

wavelet bases give computational efficiencies because of this feature. In our treatment,72

each increase in resolution will be by a factor of two and the levels associated with73

finer spatial scales will have more basis functions. Conversely, the representation has a74

parsimony in that the coarser scales require fewer basis functions to approximate the75

stochastic processes. The spatial dependence among the coefficients for each level of76

resolution is modeled using a Gaussian Markov random field (GMRF), specifically a77

spatial autoregressive (SAR) model. The fact that the basis functions are organized78

on a lattice gives the SAR a simple form along with its precision matrix, which we79
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denote as Ql = P−1l . The benefit of this approach is that Ql is sparse even though80

P l itself can be dense. Thus, gl can exhibit long range correlations among coefficients81

widely separated in the lattice even though the precision matrix is sparse.82

We have found that this combination of MR bases with companion GMRFs for the83

coefficients at each level can approximate standard families of covariance functions such84

as the Matérn, but also provides a rich model for more general spatial dependence. It85

should be noted that we make no assumption on the observation or prediction locations86

even though the latent components of our model will exploit regular grids. We are also87

able to give some analytical results that suggest why this model can approximate a88

range of spatial processes exhibiting different degrees of smoothness.89

Many of the ingredients for this model are not new, however, their particular com-90

bination with a view towards efficient computations for large and irregular spatial data91

sets has not been exploited in previous works. The key is to introduce sparsity into the92

computations in a way that does not compromise covariance models with long range93

correlations and models with many degrees of freedom. This is achieved by using com-94

pactly supported radial basis functions and computing directly the precision matrix of95

the basis coefficients, not the covariance matrix. In addition we add a normalization of96

the marginal process variance that can reduce the degree of artifacts from using a dis-97

crete basis. The net result is a flexible covariance model that has rank comparable or98

greater than the number of spatial locations and where spatial prediction, conditional99

simulation and evaluation of the likelihood can be done on a modest laptop computer.100

Recent work on statistical methods for large spatial data sets has used a fixed101

rank Kriging approach to make computations feasible. This can either take the form102

of a small number of basis functions and an unstructured and dense P matrix such103

as in Cressie and Johannesson (2008) or large number of basis and a sparse model104

such a Markov random field for Q (Eidsvik et al. 2010). An insightful approach105

was suggested in Stein (2008) and later in Sang and Huang (2011) where a low rank106

process was combined with a process that has a compactly supported covariance. This107

superposition of two processes anticipates our model where we consider a mixture108

of covariances at multiple scales. Reflecting the fact that the likelihood calculation109
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carries most of the computational cost, there has been work on approximations to the110

likelihood for spatial models by binning the observations and using spectral methods111

(Fuentes 2007) or considering a partial likelihood (Michael L. Stein 2004) or pseudo112

likelihood (Caragea and Smith 2007). Our approach differs from these papers in that113

we are able to compute the likelihood exactly.114

The next section describes the fixed rank Kriging model and its likelihood under115

a setting where the process and measurement errors have a Gaussian distribution.116

Section 3 outlines the computational algorithm and gives some timing results. The117

approximation properties of this basis/lattice model are reported in Section 4 with118

the proofs of the asymptotic results relegated to the Appendix. Section 5 provides an119

example for a climate precipitation data set and Section 6 is our conclusions. Much of120

the computations in this paper can be reproduced using the LatticeKrig package in121

R, which serves as a supplement for implementing the numerical methods and a ready122

source for the data set from Section 5.123

2 The spatial model124

2.1 Process and observational models125

Although we have introduced g as a MR, to streamline notation in this section it is126

convenient to view this model as g(x) =
∑m

j=1 cjφj(x), where we have combined the127

MR bases into a single basis, the MR coefficients into a single coefficient vector, and128

m is the total number of basis functions.129

Based on the set up in the introduction g will be a mean zero Gaussian process130

with a covariance matrix ρP and covariance function:131

COV (g(x), g(x′)) =
m∑

j,k=1

ρP j,kφj(x), φk(x
′). (4)

with P having dimension m×m.132

With respect to the observation model in (1) we assume that εi are uncorrelated,133

normally distributed with mean zero and covariance σ2W−1. Here we assume that134

σ2 is a free parameter of the measurement error distribution and W is a known but135
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sparse precision matrix. In most applications W is diagonal and we take W to be the136

identity for our example in Section 5. Let Φ be the regression matrix with columns137

indexing the basis functions and rows indexing locations. Φi,j = φj(xi). With these138

definitions one can now rewrite (1) in matrix vector notation as y = Zd+ Φc+ e and139

collecting the fixed and random components we have140

y ∼MN(Zd, ρΦPΦT + σ2W−1). (5)

As a last step it is useful to reparametrize this model to better mesh with the141

computations and in some instances to simplify formulas. Let λ = σ2/ρ and we142

reparametrize σ in terms of λ and ρ ( i.e. σ2 = λρ). Now set Mλ = (ΦPΦT +λW−1)143

and (5) is the same as y ∼MN(Zd, ρMλ).144

2.2 Spatial estimate145

From (5) we have the log likelihood146

`(y|ρ,P , λ,d) = (−1/2)(y −Zd)T (ρMλ)
−1(y −Zd)− (1/2)log|ρMλ|+ (n/2)log(π)

This expression is used to find maximum likelihood estimates (MLEs) of the fixed147

effects and covariance parameters. For computation it is often convenient to first148

maximize over the fixed effects and the covariance parameter ρ analytically to reduce149

the number of parameters for optimization. For fixed ρ and P the MLEs for d are also150

the generalized least squares (GLS) estimates151

d̂ = (ZTM−1
λ Z)−1ZTM−1

λ y. (6)

Note this estimate only depends on λ and not on ρ. Set r = y − Zd̂ and substitute152

back in the full log likelihood giving153

`(y|ρ,P , σ, d̂) = (−1/2)(rT (ρM)−1λ r)− (1/2)log|ρMλ|+ (n/2)log(π). (7)

Finally, the expression given above can be maximized analytically over ρ giving ρ̂ =154

rTM−1
λ r/n. This estimate can be substituted back into (7) to give a profile log like-155

lihood that only depends on λ = σ2/ρ and on any other covariance parameters that156

determine P .157
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The inference for the basis coefficients depends on the standard results for the158

conditional normal distribution. Specifically, the conditional distribution of c given y159

and all other parameters in the model at their true values is a multivariate normal160

[c|y,d, σ, ρ,P ] ∼MN(ĉ, ρP − ρPΦT (Mλ)
−1ΦP ) (8)

with161

ĉ = PΦTM−1
λ (y −Zd) (9)

This conditional mean, ĉ, is taken to be the point estimate (or prediction) of c162

and by linearity, the spatial prediction for g(x) at an arbitrary location is ĝ(x) =163 ∑m
j=1 φj(x)ĉj. Typically a vector of the spatial covariates, z(x), is also provided at164

this location. To reproduce the familiar universal Kriging estimator, d is set at the165

GLS estimate given above and so the full spatial prediction is: ŷ(x) = z(x)T d̂+ ĝ(x).166

2.3 Radial Basis functions (RBF)167

Our full model proposes a MR basis where each level of resolution takes the same168

form and so we start with describing a single level of basis functions on a common169

scale. The basis functions are essentially translations and scalings of a single radial170

function. Let φ be a unimodal, symmetric function in 1-dimension and let {uj},171

1 ≤ j ≤ m be a rectangular grid of points in two dimensions. Consistent with radial172

basis function terminology, we will refer to the grid points as node points and let θ be173

a scale parameter. The basis functions are then174

φ∗j = φ(||x− uj||/θ) (10)

Geometrically, the basis will consist of bumps centered at the node points with over-175

lap controlled by the choice of θ. In this work we will take φ to be a two-dimensional176

Wendland covariance (Wendland 1995) that has support on [0, 1]. The Wendland func-177

tions are polynomials on [0, 1]. They are also positive definite, which is an attractive178

property when the basis is used for interpolation. In this work we use a Wendland179

function valid up to 3 dimensions and belonging to C4:180

φ(d) = (1− d)6(35d2 + 18d+ 3)/3 for 0 ≤ d ≤ 1, and zero otherwise.
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In all examples in this work we fix the scale factor to be 2.5 times the grid spacing.181

Thus in two dimensions and away from edges each RBF overlaps with 68 others.182

2.4 Markov Random fields183

In parallel with the preceding section we describe the stochastic model for the coeffi-184

cients of a basis constructed at a single level of resolution. The MR aspect replicates185

this model at each level. The coefficient vector c at a single level follows a Gaussian186

Markov random field (GMRF) and is organized by the node points. We will assume the187

special case that the coefficients follow a spatial autoregression (SAR). The difference188

with this model for c and that in LR2011 is that we define the SAR independently189

from the choice of basis.190

Given an autoregression matrix B and e, a random vector distributed as N(0, ρI),191

we construct the distribution of c according to c = B−1e. The autoregressive interpre-192

tation is that Bc = e. That is, B transforms the correlated field to white noise with193

variance ρ. For our use we will constrain B to be sparse. Let Nj denote the indices194

of the nearest neighbors of uj. For an interior point this will be four neighbors, but195

less for the nodes at edges and corners. Following LR2011 for interior lattice points we196

take Bj,j = 4+κ2 with κ ≥ 0 and the off diagonal elements to be -1. Although one can197

modify the weights at the edges of the lattice to approximate free boundary conditions,198

we have found that adding a buffer and keeping zero boundary conditions provides an199

easier solution. The boundary effects are also diminished by the normalization dis-200

cussed in Section 2.6. By linearity c has covariance matrix ρB−1B−T and precision201

matrix given by Q = (1/ρ)BTB. Because B is formulated as unconditional weights202

on the field, any choice of B will lead to a valid covariance and so Q will be positive203

definite. It is well known that the SAR weights do not specify the Markov structure204

directly. For nonzero weights on the four neighborsQ will be a sparse matrix with each205

row having 12 nonzero elements: the first, second and third order neighbors. Thus, c206

will be a GMRF conditional on this larger clique of points. The results in LR2011 pro-207

vide the connection between this GMRF and approximations to the Matérn family of208

spatial covariances. In this particular case one expects that the SAR described above209
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will approximate a Matérn process with scale parameter κ in LR2011 and smoothness210

ν = 1.211

2.5 Extension to a MR process212

In the previous sections we have developed a basis and a covariance for a specific grid.213

The MR model extends this idea by successively halving the spacing of the grid points214

and specifying a GMRF for the coefficients at each level. Between levels we assume215

coefficients are independent. To make this idea explicit assume that the spatial domain216

is the rectangle [a1, a2]× [b1, b2] and the initial grid {u1
j} is laid out with mx×my grid217

points with the spacing δ ≡ (a2 − a1)/(mx − 1) = (b2 − b1)/(my − 1). Note here the218

constraint that the spatial domain and numbers of grid points are matched so that the219

grid spacing is the same in the x and y dimensions. Subsequent grids are defined with220

spacings δl = δ2−(l−1) and yield a sequence of grids, {ulj} that increase roughly by a221

factor of four in size from level l to level l+ 1. To define the basis functions for the lth222

level we take θl = θ/2(l−1) and define the radial basis functions as in (10). Let L denote223

the total number of levels then the (unnormalized) MR basis is φ∗j,l = φ(||x−ulj||/θl),224

where 1 ≤ l ≤ L, 1 ≤ j ≤ m(l), and m(l) = (mx − 1)(my − 1)4l−1 + mx + my + 1.225

The total number of basis functions is approximately (mxmy)(4
L), (This is not exact226

because m grid points are subdivided into 2m − 1 points at the next level.) When227

buffer nodes are added to reduce edge effects we take these as a fixed number of extra228

points that are added to each edge of the grid. The number of basis functions follows229

a more complicated expression when buffer nodes are added at each level but is still230

grows at roughly 4L.231

Recall that the vector of coefficients associated with each level is cl and the MR232

representation for g is given by equations (2) and (3) with either the unnormalized233

MR basis {φ∗j,l} or the normalized basis described in Section 2.6 below. It should be234

noted that the MR basis by itself does not contribute too much additional computation235

burden. The main difference in a single level of basis functions and a MR are additional236

nonzero elements in the inner matrix, ΦTΦ, due to coarse resolution basis functions237

overlapping with finer resolution ones. Although the MR will have more nonzero238
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elements in the inner product matrix, there are many fewer coarse functions for overlap239

and so the total number of nonzero elements does not increase substantially. This240

feature can be seen in the timing results in Section 4.241

It is useful to illustrate how the number of basis functions depend on the number242

of levels. Suppose that an initial grid of 10× 10 is chosen for a square spatial domain,243

L = 4 and 5 extra, buffer node points are added on each side to moderate the edge244

effects. The first level, will comprise (10 + 10)× (10 + 10) = 400 grid points including245

a buffer region on all four sides of the spatial domain. The second level will decrease246

the grid spacing by a factor of two giving 19 × 19 grid points included in the spatial247

domain and being aligned with the coarser grid. To these are appended 5 buffer248

points on each edge giving a total of 29 × 29 = 841 points. Subsequent levels yield249

(37 + 10)× (37 + 10) = 2209 and (73 + 10)× (73 + 10) = 6889 grid points. The four250

levels sum to 10399 grid points/basis functions and of these 7159 have nodes that are251

included in the spatial domain.252

In general we can stack these coefficients as c = (c1, c2, ..., cL) and the natural253

extension of the SAR model is a sparse matrix B such that Bc is N(0, ρI). Although254

B can be a general matrix we have found it useful to restrict attention to a block255

diagonal form. Let α1, α2, . . . , αL be a vector of positive weights and for the lth level256

we assume cl follow a GMRF with a SAR matrix, (1/
√
αl)Bl. Here Bl has the same257

form as in the single level but with the κ parameter possibly depending on the level.258

One can interpret ραl as parameterizing the marginal variance of the lth level process259

and κl is an approximate scale parameter. Thus we are lead to a block diagonal form260

for B and also for the precision matrix:261

Q = (1/ρ)


(1/α1)(B1)

TB1 0 . . . 0

0 (1/α2)(B2)
TB2 . . . 0

0 0 . . . 0

0 0 0 (1/αL)(BL)TBL

 (11)

Q will have dimension m×m equal to the total number of basis functions but of course262

will be sparse and c will have length m.263
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2.6 Normalization to approximate stationarity264

Based on the specific form forQ we have found it useful to normalize the basis functions265

to give a better approximation to stationary covariance functions. It is well known that266

a GMRF on a finite lattice can exhibit edge effects and other artifacts in the covariance267

model that are not physical. Moreover the radial basis functions having nodes on a268

discrete set can also contribute to patterns in the implied covariance matrix. One269

obvious correction for this effect is to weight the basis functions so that when (4)270

is evaluated one will obtain a constant marginal variance. Accordingly, let ω(x) =271 √
COV (g(x), g(x)) from (4) and normalize the basis functions as φj(x) = φ∗j(x)/ω(x).272

Because this normalization is tied to the choice of covariance model it means that the273

basis is no longer independent of the GMRF and this linkage adds more computational274

overhead. However, computing ω(x) can take advantage of the sparse precision matrix275

and we believe reducing edge effects and other artifacts is worth the extra computation.276

3 Computational strategy and timing results277

The estimators defined in the previous section can be found efficiently by a judicious278

use of sparse matrix decompositions and matrix identities. Most of these computations279

depend on the constructions of Φ, W andQ to be sparse matrices. Our basic approach280

exploits the fact that a sparse and positive definite matrix can be factored into a sparse281

cholesky decomposition. With this decomposition it is efficient to evaluate inverses and282

determinants. In this section we outline the key numerical steps and the reader should283

refer to Nychka et al. (2013) and the commented LatticeKrig package source code284

for details.285

3.1 Spatial prediction and evaluating the likelihood286

A basic calculation that illustrates the computational strategy is to evaluateM−1
λ w for287

an arbitrary vector w. Recall that Mλ = ΦPΦT +λW−1 and taken at face value Mλ288

is a dense, potentially large matrix and so difficult to work with directly. The strategy289

is to transform Mλ using matrix identities to involve the sparse precision matrix. The290
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Sherman-Morrison-Woodbury formula (Henderson and Searle (1981)) can be applied291

to give292

M−1
λ =

(
ΦPΦT + λW−1)−1 = (W − (WΦ)G−1(ΦTW ))

where G = ΦTWΦ + λQ. Because Φ, W and Q are all sparse, G will also be293

sparse and positive definite. Using this identity one can now use the sparse Cholesky294

decomposition for G to solve the linear system Gv = (ΦTW )w for v and it follows295

that296

M−1
λ w = Ww −WΦv

Note that an important limitation of this computational strategy is that λ can not be297

identically zero. To compute ĉ we use the identity ĉ = G−1ΦTW (y−Zd̂) and exploit298

the sparsity of Φ and W for multiplication and the sparse Cholesky factorization of G.299

Finally note that the evaluation of ĝ(x) can also be computed in an efficient manner300

if the sum is restricted to basis functions that are nonzero at x.301

The other intensive computation occurs in the likelihood as the determinant of302

Mλ. Here we use a special case of Sylvester’s Theorem: For an n×m matrix U and303

identity matrices In and Im, |UUT +In| = |UTU +Im|. Using elementary properties304

of matrices one can derive the identity |Mλ| = λn−m|G|/(|Q||W |). The matrices,305

W , G and Q are all positive definite and sparse so the determinants can be found306

efficiently from the product of the diagonal elements of the Cholesky decompositions.307

Based on exploiting matrix sparsity and these classic matrix identities one can308

evaluate the likelihood in an efficient manner. With this option we just use standard309

maximum likelihood methods of inference on the covariance parameters.310

In this work we suggest finding the prediction errors using the well known Monte311

Carlo technique of conditional simulation. Under the assumption that the covariance312

model is known, one generates a sample from the conditional distribution of g and d313

given the observations. The prediction variance can be approximated from Monte Carlo314

draws from this conditional distribution. This computation can be done in two steps:315

simulating an unconditional random process at the prediction and observation locations316

and then determining the prediction errors based on synthetic/simulated observations317

for this realization. The first step is an standard application of multivariate simulation318
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by solving a linear system based on the Cholesky decomposition of the precision matrix319

and the second step is the same spatial estimator that is applied to actual data.320

Here we present some timing results for the computations with the main compar-321

ison being with the dense matrix computations associated with Kriging. The spatial322

locations were uniformly distributed over the domain [0, 1] × [0, 1] and the number323

were varied between 500 and 20000. The likelihood function and spatial predictions324

were found for an exponential covariance model and several choices of the lattice MR325

model. For these algorithms the computation time is dominated by basic linear alge-326

bra and does not depend on the values of the spatial data, the distribution of spatial327

locations, and the specific values of the covariance parameters. The timing is done328

for the function mKrig in the R package fields (Furrer et al. 2012) implementing329

standard Kriging and for the function LKrig in the R package LatticeKrig (Nychka330

et al. 2012) implementing the MR basis function model. Times reported are on a single331

processor for a Macbook Pro laptop ( 2.3 Ghz Intel Core i7, 8Gb memory) and R 3.0.1332

(R Development Core Team 2011). Both of these functions compute the predictions at333

the observations for a fixed covariance model, evaluate the likelihood and compute the334

coefficients for predicting the surface at arbitrary points. Despite this varied output335

from the functions, the Cholesky decomposition in both mKrig and LKrig dominate336

the time for large n.337

Figure 1 reports the total time (“wall clock” time) for these functions using the R338

utility system.time. The dashed line is the time for the standard “Kriging” estimate339

using mKrig up to 10,000 observations and with times extrapolated to 20,000. Thus340

the time for 20,000 observations and standard Kriging is estimated to be about 1,300341

seconds (about 21 minutes). The solid black line is the time for the function LKrig with342

a single level with the number of basis functions chosen to be approximately equal to343

the sample size, and with the basis functions normalized to have unit marginal variance.344

The dotted black line is the same scheme but without normalizing the basis functions.345

Note that for 20000 spatial locations the times for this case are 66 seconds (normalized)346

and 5.4 seconds (unnormalized). The grey lines report timing with the number of basis347

functions keep fixed and with (solid) and without (dashed) normalization. The lines348
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labeled 10 have four levels (L = 4) of MR and where the coarsest basis has centers349

on a 10× 10 grid (mx = my = 10) and giving 7159 basis functions with nodes within350

the spatial domain and 10339 total. The lines labeled 20 have coarsest grid being a351

20× 20 grid (mx = my = 20) with a total of 31,259 basis functions within the spatial352

domain and 37,439 total. The memory for this case is dominated by storage of the353

sparse matrix G comprising 7.4× 106 nonzero elements taking 60Mb of memory.354

These results indicate substantial time savings over the dense matrix computations355

and evaluations of the likelihood are feasible even for 20000 spatial locations. The356

unnormalized computation times are particularly striking and are largely dominated357

by the sparse Cholesky decomposition of the matrix G discussed in Section 3. For358

this work we have not exploited more efficient algorithms in the normalization step359

and there is a significant difference between the normalized and unnormalized cases.360

As might be expected the two covariance models with fixed number of basis functions361

(“10” and “20” cases ) are closer to being linear as a function sample size. At the362

sample size of approximately 10400 the 10× 10, L = 4 case and the single level model363

103 × 103, L = 1 case have equal numbers of basis functions. However, because of364

the difference in levels the four level model has a G with 1.88× 106 nonzero elements365

compared to .67× 106 for the one level model. This difference in sparsity explains the366

timing differences for the unnormalized computations. The normalized computations367

are apparently dominated by the normalization computation.368

4 Properties of the covariance model369

4.1 Comparison to a convolution process370

As a foundation, we first consider a convolution approximation to the sum of radial371

basis functions. First we define a single convolution process and then extend this to an372

infinite mixture. Let z be a unit variance, isotropic, two dimensional Matérn process373

with spatial scale parameter κ, smoothness ν, and Cν(||x − x′||/κ) = E(z(x)z(x′)),374

the corresponding covariance function. Also let φ be a compactly supported RBF with375
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φ(0) = 1. For θ > 0 a scale parameter, define the convolution process376

g(x) =

∫
R2

1

θ2
φ(||x− u||/θ)z(u)du.

This type of process for statistical modeling is well-established (see Higdon 1998) and377

as written will be Gaussian, mean zero, and have an isotropic covariance function.378

Now consider a sequence of independent Matérn processes, zl(x) with {θl} a sequence379

of scale parameters for the convolution kernel and “hard wire” κl = 1/θl. These define380

a sequence of convolution processes gl(x) according to (12) with the same marginal381

variance. Finally, let kl denote the covariance function for the lth process. Given,382

non-negative weights {αk} that are summable we are lead to the MR process that is383

Gaussian, mean zero and covariance given by384

k(x,x′) =
∞∑
l=1

αlkl(x,x
′).

Given this representation, a theoretical question is how the choice of {θl} and {αl}385

influence the properties of k. In particular, is it possible to construct covariances that386

represent different degrees of smoothness than those implied by the basis functions387

and Matérn process used in the convolution? Typically the smoothness of an isotropic,388

stationary Gaussian process is tied to the differentiability of the covariance function at389

the origin. An alternative measure is to characterize the tail behavior of the spectral390

density of the process. Under isotropy the spectral density will be radially symmetric391

and we focus on the decay rate as r increases. In particular, for spectral densities whose392

tails are bounded by a fixed polynomial decay we will take the polynomial order as a393

convenient measure of the process smoothness. For the Matérn family a smoothness of394

ν and dimension 2 the spectral density will have a tail behavior following r−(2ν+2) as395

r →∞. For example the exponential covariance (ν= 1/2) will have a spectral density396

that decreases at the polynomial rate r−3. A covariance spectrum with tail behavior of397

the same order might be expected to provide a process model with similar smoothness398

to the exponential at small spatial scales. The following theorem reports the tail399

behavior for the MR process for different choices of the scale and weight sequences.400

An interesting result is that the MR process can reproduce a scale of different decay401
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rates for the tail of the spectral density and can recover the -3 rate of decay for the402

exponential covariance.403

Theorem 4.1 Assume (1) φ is a two-dimensional Wendland covariance function of404

order K. (2) the smoothness of the Matérn processes is fixed at ν = 1. (3) αl = e−2β1l405

and θl = e−β2l with β1, β2 > 0 and (β1/β2 + 1) < (5+ 2K). If S(r) denotes the spectral406

density of g (or k) with respect to the radial coordinate then there are constants407

independent of r, 0 < A1, A2 <∞ such that408

A1 < S(r)r2µ+2 < A2, with µ = β1/β2.

Corollary 4.1 Under assumptions (1) and (2) and θl = 2−l, αl = θ2νl and (ν + 1) <409

(5 + 2K), S(r) will have tail behavior with the same polynomial order as a two-410

dimensional, Matérn process spectrum with smoothness ν.411

The proof of this theorem is given in the Appendix.412

4.2 Numerical approximation413

The theoretical approximation is based on a continuous convolution of the basis func-414

tions with the Matérn covariance. We have found that the theoretical sequence of415

weights gives an accurate approximation when 6 or more levels are considered. How-416

ever this theoretical comparison does not exactly match the discrete stochastic model417

used for data analysis. A more practical comparison is how well the discrete MR basis418

proposed here can match members of the Matérn family. We investigate the quality419

of the approximation given θl = 2−l but optimizing over {κl} and and {αl}. Note420

that this scheme is slightly different than the theoretical setup because κl is allowed421

to vary independently from θl and αl is not constrained to be a power of θl. The most422

important constraint in choosing an approximation is the initial choice of grid size (mx423

and my) and the number of levels, L. The spacing of the nodes should be chosen so424

the coarsest level is comparable to the process correlation range and L such that the425

finest basis functions have smaller scale than the finest spatial scale of the process. One426

advantage of this model is that flexibility in choosing the range parameter κ means427

that the grid spacings need not exactly conform to the correlation scale of the process.428
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The first column in Figure 2 shows the approximation for an exponential covariance429

with range parameters .1, .5 and 1.0 using 3 and 4 levels of MR basis functions. The MR430

parameters κl and αl have been found by minimizing the mean squared error between431

the approximation and the target covariance function on a grid of 200 distances in432

the interval [0, 1]. The coarsest basis function centers are organized on a 10 × 10433

grid on the square [−1, 1] × [−1, 1] and so with four levels the approximation has434

102 + 192 + 372 + 732 = 7159 two-dimensional basis functions with nodes that are435

included in the spatial domain. There are 10339 basis functions total considering the436

buffer regions. The plots in the upper row are the target and approximate covariances437

as a function of distance from the point (0, 0) along the x-axis. The approximation438

is close to being stationary and isotropic and so this comparison is representative for439

distances along other orientations. In the plots the solid curve is the covariance, the440

dotted line is the approximation with 3 levels, and the dashed line is the approximation441

at 4 levels.442

Not surprisingly the approximation breaks down at small distances that are below443

the resolution of the finest basis functions This feature is highlighted by the plots in444

the lower row where the approximation is given for points in a range close to zero.445

The characters “3” and “4” indicate the smallest scale of the basis functions and446

thus indicate the limits of the MR for the 3 and 4 level choices. In general it is447

straightforward to improve this approximation by increasing L beyond 4. A similar448

approximation is made for the Whittle covariance (µ = 1) except for the largest range449

parameter the coarsest basis has centers on a 5 × 5 grid (giving a total of 1484 basis450

functions). This case is an example where the smoothness of the covariance at zero451

does require as detailed basis functions and in fact we found empirically that the452

courser initial grid (5 × 5) gives a better approximation. Note that in the error plot453

there is also a small artifact, a rippling feature that is from the discrete spacing of454

the basis functions. The third column of Figure 2 is an example of the ability of455

the MR to approximate more general correlation functions. This is perhaps the most456

strikingly example of the flexibility of this model. Here the target is a mixture of457

exponentials: .4 exp(−d/.1) + .6 exp(−d/3). For reference the individual exponent458
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correlation functions are plotted as grey solid lines. The approximation is also accurate459

with the error localized near the origin and being large below the smallest scale of the460

MR.461

5 North American summer precipitation462

The MR lattice model was applied to a substantive climate data set in order to test463

its practical value and compare it to standard Kriging. The goal is to estimate the464

average summer rainfall on a fine grid for North America based on high quality surface465

observations (NOAA/NCDC 2011). These types of fields are an important reference466

in studying the Earth’s climate system. GHCN data is quality controlled, curated and467

served by the US National Climatic Data Center and for this example we use 1720468

stations from North America. For each station, a least squares trend line was fit to469

the summer precipitation totals (June, July, August) for the period 1950-2010 and470

the trend line was evaluated at the midpoint time (1980.5). Note that with complete471

observations this is just the sample mean and we will refer to these statistics as the472

station “mean summer precipitation”. However, 75% of the adjusted stations are473

missing at least 10 values in this period and the least squares analysis will differ from474

a sample average.475

The version of the climate data used is the R data set NorthAmericanRainfall476

in the LatticeKrig package and a spatial model was fit using stereographic map477

coordinates for the station locations. This projection gave spatial coordinates whose478

euclidean distances were similar to great circle distance (see Figure 3). The spatial479

model was fit to the log of mean precipitation with the spatial coordinates and elevation480

included as a linear fixed effects. Three correlation models were considered and we481

report the MLEs for the relevant parameters and the effective degrees of freedom (482

EDF).483

Matern (2 parameters) A stationary, isotropic Matern with range and smoothness484

parameters.485

σ̂ = .1084, EDF= 943.486
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Matern-like (2 parameters) A three-level, MR covariance with coarsest level having487

a lattice of 16 × 13 included the rectangular spatial domain amounting to ap-488

proximately 4000 basis functions. A common value for κ was used to control the489

range at all levels. The first MR model constrains {α1, ..., α3}, αk ∼ 2−2ν with490

the additional constraint that
∑
αk = 1.491

σ̂ = .1402, ν̂ = .49, κ̂ = .96, EDF= 489.4.492

Multi-resolution (3 parameters) The same three-level structure as the Matern-like493

model with κ a common parameter with αk > 0 and
∑
αk = 1.494

σ̂ = .1353, α̂ = (0.91, 0.00, 0.09), κ̂ = .7071, EDF= 550.6.495

All three covariance functions include the variance parameter, ρ being the marginal496

variance of the spatial process and the parameter, σ2, that is the measurement error497

(or nugget) variance.498

The initial grid size for the MR models and the number of levels was identified by499

trying several sizes and comparing likelihood values when models were nested. We500

also avoided configurations where κ was large suggesting an uncorrelated model for501

the GMRF. The covariance parameters were estimated by maximum likelihood and502

confidence regions for the parameters were derived using the large sample chi-squared503

approximation to -2 times the log likelihood. Based on a 95% confidence set the504

range parameter for the Matern model was not constrained from above and so a thin-505

plate spline model, i.e. a limiting process as the range becomes large, is not ruled506

out. The smoothness parameter however has an MLE of .64. Figure 4 compares the507

correlation functions for these three different models based on the confidence sets for508

the parameters. Here the usual 95% confidence set for the model parameters based on509

the likelihood was translated into a confidence band for the corresponding correlation510

functions. The MR models have the flexibility to have long range correlations and511

it is interesting for these data that their shape is different than the Matern family.512

Also it is striking that the three level MR has α2 ≈ 0 suggesting omitting the middle513

resolution level. The spatial predictions given by all three models are similar, however,514

and within the prediction uncertainty measures. The measurement error variance is515

smaller for the Matern compared to the lattice models and this is consistent with the516
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Matern representing a slightly rougher process than the MR models. In this case the517

Matern process captures more of the fine scale variability and so less is represented by518

the measurement error/nugget term.519

Figure 5 is an example of the expected precipitation surface for a subregion over520

the Rocky Mountains centered on Colorado. The MR covariance with the MLE pa-521

rameters reported above is used for these estimates, which are evaluated on 200× 200522

grid. 200 conditional fields were simulated and to increase the accuracy of this sample523

the realizations were centered so that their mean matched their conditional expected524

mean, which can be computed exactly. Although the spatial model was estimated on525

a log scale of precipitation, the conditional samples were transformed to the raw scale526

of precipitation totals to represent the distribution for unlogged values. Specifically527

the surface in (a) is mean of the exponentiated conditional fields. Here the elevation528

covariate explains a large amount of the spatial structure but this component is mod-529

ified by the smooth nonparametric component based on the location. Plot (b) is the530

estimated prediction standard error as a percentage of the mean predicted field.531

6 Discussions and Conclusions532

This work has developed a new model for a spatial process: a lattice/basis model that533

builds on ideas from fixed rank Kriging and the computational efficiencies that are534

inherited from Markov random fields. The key contribution is that an independent535

sum of the processes at different scales can approximate a larger family of processes536

not limited to the properties of the covariance at each resolution level. One advantage537

of our model is numerical evidence that it can accurately reproduce the Matérn family538

of covariances. Also we give some asymptotic results based on a theoretical convolution539

model that indicate that a range of smoothness properties can be achieved. This result540

is unexpected given that the lattice/basis process has a fixed smoothness controlled by541

the choice of basis functions.542

Besides the value of the lattice/basis formulation as a new covariance model there543

is an equally important contribution in computational efficiency for large data sets. In544

fact it is our perspective that more complex covariance models can only be exploited545
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when large number of observation locations allow for accurate estimation of covariance546

parameters. Thus efficient computation is intrinsic to entertaining new spatial models.547

We have been successful in identifying algorithms that allow for computing the like-548

lihood to estimate covariance parameters and the prediction of the spatial field using549

large data sets.550

Because of the description of the stochastic spatial elements in terms of a SAR, it is551

straightforward to propose a non stationary extension to the lattice basis model. One552

would allow both the κl and αl to vary over the lattice at each level. An additional553

refinement would allow the SAR weights between the neighboring lattice points to554

be directionally dependent. In particular extending the SAR weights to the 8 first555

and second order neighbors can allow for a model that has directional or anisotropic556

dependence. The spatial variation in these parameters could be modeled by a set557

of covariates and fixed effects or one could include a spatial process prior on these558

parameter fields. The advantage of our approach and also of the related SPDE and559

process convolution models is that one will always obtain a valid covariance function560

because the model focuses on a process level description.561

We conjecture that the choice of the Wendland family of RBFs is not crucial and562

other compacted supported, positive definite functions will work. Moreover by mod-563

ifying the distance metric to one of chordal distance one can also extend these ideas564

to the sphere. The one hurdle in an extension to a spherical process, however, is to565

devise non-rectangular grids for the nodes and to formulate a SAR on these points.566

Finally, we note that the lattice/basis model can be implemented using a collection567

of simple numerical algorithms and readily available software. An R implementation568

is available with documented and commented source code and uses the general sparse569

matrix R package spam. The LatticeKrig source code is largely written in the R570

language with limited use of lower level C or FORTRAN functions and hence is easy571

to modify.572
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Figure 1: Timing results for the lattice/basis model and standard Kriging in seconds for several

different numbers of basis functions and for the standard evaluation of the likelihood based on a

dense covariance matrix. The dashed line is the time for the mKrig function from the fields R

package that computes the likelihood and related statistics for an exponential covariance model

with a fixed set of covariance parameters using a standard dense matrix Cholesky decomposition.

Solid and dotted lines are times for the LKrig function from the LatticeKrig R package that

compute the likelihood and related statistics for a MR lattice covariance with fixed parameters.

Solid lines are times with normalization to a constant marginal variance and dotted lines are times

without normalization. Among these cases the black lines are for a single level model where the

basis functions are chosen to be roughly equal to the number of spatial locations. The orange

lines use a fixed number of basis functions comprising four levels and with the coarsest level being

either 10×10 or 20×20. Text labels identify these cases.
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Figure 2: Approximation of Matérn covariances using the lattice/basis model. For the plots on

thetop row the solid grey lines are the true correlation functions. First column is an exponential

correlation with range parameter (.1, .5 and 1.0), second column is the Whittle correlation with

ranges .1,.5 and 1.0 and the third column is a mixture of two exponential correlation functions.

Black lines are the approximations to these correlation functions. Approximations are indicated

in black with L = 3 (dashed) or L = 4 (solid). The upper row is the approximations with the

true correlations over the distance limits [0, .3]. The lower row are the differences between the

approximation and the true correlation function for the cases when the range is .1 or for the

mixture model. The characters 3 and 4 indicate the support for the basis functions at the third

and fourth levels of resolution.
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Figure 3: Illustration of the spatial domain and basis grid for the precipitation example. Left plot

is a stereographic projection of precipitation location observation locations indicating the the the

subregion in figure 5. The right plot shows the three different grids (”+” – coarse, large dot –

middle and small dot – fine) defining the nodes for the MR basis including the buffer regions of

5 extra nodes on each side to minimize edges effects. Shading indicates the rectangular spatial

domain.
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Figure 4: Correlation models fit to the precipitation data. Dashed line is the Matérn correlation

function found by maximum likelihood and the light grey shading is an approximate 95% uncer-

tainty region based on a confidence set for the range and smoothness parameters. Dotted line is

the estimated correlation and uncertainty (dotted envelope) for the Matern-like covariance model.

Solid line with darker shading is a similar summary for the three level MR model.
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(b)

Figure 5: Plot (a) reports the spatial predictions for mean summer (June July and August)

precipitation in centimeters and includes elevation as a fixed linear covariate over the Rocky

Mountain region of the US. This subregion is outlined in Figure 3. The spatial covariance function

is the three level MR model described in Figure 4. Plot (b) reports approximate prediction

standard errors for this surface as a percentage of the predicted mean field. Solid points show

observation stations.
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Appendix635

Note that the convolution process has a covariance function given by636 ∫
R2

∫
R2

1

θ4
φ(||x− u||/θ)Cν(||u− v||/κ)φ(||x′ − v||/θ)dudv. (12)

Outline of proof637

Let φ̃k be the spectral density for φ and C̃ν the spectral density of a Matérn field with638

ν = 1, unit variance and unit spatial scale parameter. Including the scale parameter639

for the radial basis function kernel and using elementary properties of convolution.640

S̃(r) =
∞∑
l=1

αl

[
θ2l C̃ν(θlr)

] [
φ̃k(θlr)

]2
The Matérn spectral density is641

C̃ν(r) =
1

(2π)

1

(1 + r2)2
.

For the Wendland spectral density there are constants C1 and C2 depending only on642

K such that for all ω643

C1 ≤ φ̃k(ω)(1 + ‖ω‖2)3/2+K ≤ C2,

(Wendland (1998)). Using the upper bound on φ̃, substituting the expressions for θl644

and αl and finally combining terms gives the upper bound645

S̃(r) < C ′
∞∑
l=1

αl
θ2l

(1 + (rθl)2)η
= C ′

∞∑
l=1

e−2β1le−2β2l

(1 + (re−β2l)2)η
= C ′

∞∑
l=1

e−(2β1+2β2)l

(1 + r2e−2β2l)η
,

with η = 2 + 2(3/2 +K) = 5 + 2K.646

Now apply the useful lemma given below with the identifications a = 2β1 + 2β2647

, b = 2β2 and c = η and s = r2. We have the rate given by r−2(a/b) and with648

2a/b = 2(2β1 + 2β2)/2β2 = 2β2/β1 + 2. The result for the upper bound now follows649

and the rate for the lower bound is proved in a similar manner.650

Two Useful Lemmas651

Lemma 6.1. Let H be a continuous and integrable function on [1,∞]. Also assume652

that H is positive and unimodal with maximum at u∗.653
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∣∣∣∣∣
∞∑
l=1

H(l)−
∫ ∞
1

H(u)du

∣∣∣∣∣ < H(u∗)

Proof Let L be the integer so that H(L) = maxlH(l) also let Il =
∫ l+1

l
H(u)du then654

by elementary properties of the integral and the unimodality of H655

Il > H(l), 1 ≤ l ≤ (L− 1)

Il−1 > H(l), (L+ 1) ≤ l ≤ ∞
(13)

summing over l gives656

∞∑
l=1

Il >
∑
l 6=L

H(l)

Simplifying and rearranging terms657 ∫ ∞
1

H(u)du−
∞∑
l=1

H(l) > −H(L)

Again by properties of the integral and H658

Il−1 < H(l), 2 ≤ l ≤ L

Il < H(l), (L+ 1) ≤ l ≤ ∞
(14)

summing over l gives659 ∫ ∞
1

H(u)du <
∑
l 6=L

H(l)

or660 ∫ ∞
1

H(u)du−
∞∑
l=1

H(l) < H(L)

Noting that H(L) < H(u∗) the result now follows.661

Lemma 6.2. For a, b, c, s > 0 and for (a/b)−c < 0 there are constants 0 < C1, C2 <∞662

C1s
−a/b <

∞∑
l=1

e−al

(1 + se−bl)c
< C2s

−a/b

Proof Based on Lemma 1 let H(u) = e−au/(1 + se−bu)c. H is unimodal. From basic663

calculus the maximum of H is H(u∗) = Cs−a/b for 0 < C <∞ and C depending only664

on a, b, c. We now evaluate the approximating integral from Lemma 1 as a function of665

s.666
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∫ ∞
1

H(u)du =

∫ ∞
1

e−audu

(1 + se−bu)c
=

∫ ∞
1

(e−bu)a/bdu

(1 + se−bu)c

Now make the substitution q = e−bu giving dq = −b(ebu)du or du = −dq
bq

and with667

limits of integration, e−b and 0. One obtains668

b

∫ e−b

0

q(a/b)−1dq

(1 + sq)c
(15)

Since (a/b) > 0 the pole at zero is integrable and the integral is finite. Now make669

the substitution p = sq giving dp = sdq and670

b

∫ se−b

0

(p/s)(a/b)−1dp

s(1 + p)c
= bs−a/b

∫ se−b

0

p(a/b)−1dp

(1 + p)c
(16)

Under the assumption that a/b − c < 0 the integral will be finite in the limit as671

s → ∞. Thus
∫∞
1
H(u)du and H(u∗) converge to zero at the polynomial rate s−a/b672

and the result follows from application of Lemma 1.673
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